xls-r-es-test-lm / README.md
anton-l's picture
anton-l HF staff
Upload README.md
a1d1187
metadata
language:
  - es
license: apache-2.0
tags:
  - automatic-speech-recognition
  - es
  - generated_from_trainer
  - hf-asr-leaderboard
  - mozilla-foundation/common_voice_8_0
  - robust-speech-event
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: xls-r-es-test-lm
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8.0
          type: mozilla-foundation/common_voice_8_0
          args: es
        metrics:
          - name: Test WER
            type: wer
            value: 9.4
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: es
        metrics:
          - name: Test WER
            type: wer
            value: 27.95
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Test Data
          type: speech-recognition-community-v2/eval_data
          args: es
        metrics:
          - name: Test WER
            type: wer
            value: 30.86

xls-r-es-test-lm

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ES dataset. It achieves the following results on the test set with lm model:

  • Loss: 0.1304
  • WER: 0.094
  • CER: 0.031

It achieves the following results on the val set with lm model:

  • Loss: 0.1304
  • WER: 0.081
  • CER: 0.025

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9613 0.07 500 2.9647 1.0
2.604 0.14 1000 1.8300 0.9562
1.177 0.21 1500 0.3652 0.3077
1.0745 0.28 2000 0.2707 0.2504
1.0103 0.35 2500 0.2338 0.2157
0.9858 0.42 3000 0.2321 0.2129
0.974 0.49 3500 0.2164 0.2031
0.9699 0.56 4000 0.2078 0.1970
0.9513 0.63 4500 0.2173 0.2139
0.9657 0.7 5000 0.2050 0.1979
0.9484 0.77 5500 0.2008 0.1919
0.9317 0.84 6000 0.2012 0.1911
0.9366 0.91 6500 0.2024 0.1976
0.9242 0.98 7000 0.2062 0.2028
0.9138 1.05 7500 0.1924 0.1863
0.921 1.12 8000 0.1935 0.1836
0.9117 1.19 8500 0.1887 0.1815
0.9064 1.26 9000 0.1909 0.1839
0.9118 1.32 9500 0.1869 0.1830
0.9121 1.39 10000 0.1863 0.1802
0.9048 1.46 10500 0.1845 0.1791
0.8955 1.53 11000 0.1863 0.1774
0.8947 1.6 11500 0.1907 0.1814
0.9073 1.67 12000 0.1892 0.1853
0.8927 1.74 12500 0.1821 0.1750
0.8732 1.81 13000 0.1815 0.1768
0.8761 1.88 13500 0.1822 0.1749
0.8751 1.95 14000 0.1789 0.1715
0.8889 2.02 14500 0.1819 0.1791
0.8864 2.09 15000 0.1826 0.1794
0.886 2.16 15500 0.1788 0.1776
0.8915 2.23 16000 0.1756 0.1719
0.8689 2.3 16500 0.1769 0.1711
0.879 2.37 17000 0.1777 0.1739
0.8692 2.44 17500 0.1765 0.1705
0.8504 2.51 18000 0.1699 0.1652
0.8728 2.58 18500 0.1705 0.1694
0.8523 2.65 19000 0.1674 0.1645
0.8513 2.72 19500 0.1661 0.1611
0.8498 2.79 20000 0.1660 0.1631
0.8432 2.86 20500 0.1636 0.1610
0.8492 2.93 21000 0.1708 0.1688
0.8561 3.0 21500 0.1663 0.1604
0.842 3.07 22000 0.1690 0.1625
0.857 3.14 22500 0.1642 0.1605
0.8518 3.21 23000 0.1626 0.1585
0.8506 3.28 23500 0.1651 0.1605
0.8394 3.35 24000 0.1647 0.1585
0.8431 3.42 24500 0.1632 0.1573
0.8566 3.49 25000 0.1614 0.1550
0.8534 3.56 25500 0.1645 0.1589
0.8386 3.63 26000 0.1632 0.1582
0.8357 3.7 26500 0.1631 0.1556
0.8299 3.77 27000 0.1612 0.1550
0.8421 3.84 27500 0.1602 0.1552
0.8375 3.91 28000 0.1592 0.1537
0.8328 3.97 28500 0.1587 0.1537
0.8155 4.04 29000 0.1587 0.1520
0.8335 4.11 29500 0.1624 0.1556
0.8138 4.18 30000 0.1581 0.1547
0.8195 4.25 30500 0.1560 0.1507
0.8092 4.32 31000 0.1561 0.1534
0.8191 4.39 31500 0.1549 0.1493
0.8008 4.46 32000 0.1540 0.1493
0.8138 4.53 32500 0.1544 0.1493
0.8173 4.6 33000 0.1553 0.1511
0.8081 4.67 33500 0.1541 0.1484
0.8192 4.74 34000 0.1560 0.1506
0.8068 4.81 34500 0.1540 0.1503
0.8105 4.88 35000 0.1529 0.1483
0.7976 4.95 35500 0.1507 0.1451
0.8143 5.02 36000 0.1505 0.1462
0.8053 5.09 36500 0.1517 0.1476
0.785 5.16 37000 0.1526 0.1478
0.7936 5.23 37500 0.1489 0.1421
0.807 5.3 38000 0.1483 0.1420
0.8092 5.37 38500 0.1481 0.1435
0.793 5.44 39000 0.1503 0.1438
0.814 5.51 39500 0.1495 0.1480
0.807 5.58 40000 0.1472 0.1424
0.7913 5.65 40500 0.1471 0.1422
0.7844 5.72 41000 0.1473 0.1422
0.7888 5.79 41500 0.1445 0.1385
0.7806 5.86 42000 0.1435 0.1394
0.7773 5.93 42500 0.1461 0.1424
0.786 6.0 43000 0.1450 0.1413
0.7784 6.07 43500 0.1463 0.1424
0.7937 6.14 44000 0.1438 0.1386
0.7738 6.21 44500 0.1437 0.1383
0.7728 6.28 45000 0.1424 0.1371
0.7681 6.35 45500 0.1416 0.1376
0.776 6.42 46000 0.1415 0.1380
0.7773 6.49 46500 0.1416 0.1371
0.7692 6.56 47000 0.1398 0.1345
0.7642 6.62 47500 0.1381 0.1341
0.7692 6.69 48000 0.1392 0.1334
0.7667 6.76 48500 0.1392 0.1348
0.7712 6.83 49000 0.1398 0.1333
0.7628 6.9 49500 0.1392 0.1344
0.7622 6.97 50000 0.1377 0.1329
0.7639 7.04 50500 0.1361 0.1316
0.742 7.11 51000 0.1376 0.1327
0.7526 7.18 51500 0.1387 0.1342
0.7606 7.25 52000 0.1363 0.1316
0.7626 7.32 52500 0.1365 0.1313
0.752 7.39 53000 0.1354 0.1309
0.7562 7.46 53500 0.1362 0.1312
0.7557 7.53 54000 0.1358 0.1325
0.7588 7.6 54500 0.1343 0.1311
0.7485 7.67 55000 0.1346 0.1301
0.7466 7.74 55500 0.1354 0.1314
0.7558 7.81 56000 0.1359 0.1325
0.7578 7.88 56500 0.1363 0.1334
0.7411 7.95 57000 0.1346 0.1301
0.7478 8.02 57500 0.1355 0.1305
0.7451 8.09 58000 0.1349 0.1302
0.7383 8.16 58500 0.1349 0.1294
0.7482 8.23 59000 0.1341 0.1293
0.742 8.3 59500 0.1338 0.1296
0.7343 8.37 60000 0.1348 0.1307
0.7385 8.44 60500 0.1324 0.1282
0.7567 8.51 61000 0.1334 0.1281
0.7342 8.58 61500 0.1338 0.1289
0.7401 8.65 62000 0.1331 0.1285
0.7362 8.72 62500 0.1329 0.1283
0.7241 8.79 63000 0.1323 0.1277
0.7244 8.86 63500 0.1317 0.1269
0.7274 8.93 64000 0.1308 0.1260
0.7411 9.0 64500 0.1309 0.1256
0.7255 9.07 65000 0.1316 0.1265
0.7406 9.14 65500 0.1315 0.1270
0.7418 9.21 66000 0.1315 0.1269
0.7301 9.27 66500 0.1315 0.1273
0.7248 9.34 67000 0.1323 0.1274
0.7423 9.41 67500 0.1309 0.1267
0.7152 9.48 68000 0.1312 0.1271
0.7295 9.55 68500 0.1306 0.1262
0.7231 9.62 69000 0.1308 0.1263
0.7344 9.69 69500 0.1313 0.1267
0.7264 9.76 70000 0.1305 0.1263
0.7309 9.83 70500 0.1303 0.1262
0.73 9.9 71000 0.1303 0.1261
0.7353 9.97 71500 0.1304 0.1260

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0