Update README.md
Browse files
README.md
CHANGED
@@ -1,217 +1,125 @@
|
|
1 |
---
|
2 |
-
2
|
3 |
language: ro
|
4 |
-
3
|
5 |
datasets:
|
6 |
-
4
|
7 |
- common_voice
|
8 |
-
5
|
9 |
tags:
|
10 |
-
6
|
11 |
- audio
|
12 |
-
7
|
13 |
- automatic-speech-recognition
|
14 |
-
8
|
15 |
- speech
|
16 |
-
9
|
17 |
- xlsr-fine-tuning-week
|
18 |
-
10
|
19 |
license: apache-2.0
|
20 |
-
11
|
21 |
model-index:
|
22 |
-
12
|
23 |
- name: XLSR Wav2Vec2 Romanian by George Mihaila
|
24 |
-
13
|
25 |
results:
|
26 |
-
14
|
27 |
- task:
|
28 |
-
15
|
29 |
name: Speech Recognition
|
30 |
-
16
|
31 |
type: automatic-speech-recognition
|
32 |
-
17
|
33 |
dataset:
|
34 |
-
18
|
35 |
name: Common Voice ro
|
36 |
-
19
|
37 |
type: common_voice
|
38 |
-
20
|
39 |
args: {lang_id}
|
40 |
-
21
|
41 |
metrics:
|
42 |
-
22
|
43 |
- name: Test WER
|
44 |
-
23
|
45 |
type: wer
|
46 |
-
|
47 |
-
value: 37.1
|
48 |
-
25
|
49 |
---
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
28
|
54 |
-
29
|
55 |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Romanian using the [Common Voice](https://huggingface.co/datasets/common_voice)
|
56 |
-
30
|
57 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
58 |
-
|
59 |
-
32
|
60 |
## Usage
|
61 |
-
|
62 |
-
34
|
63 |
The model can be used directly (without a language model) as follows:
|
64 |
-
|
65 |
-
36
|
66 |
```python
|
67 |
-
37
|
68 |
import torch
|
69 |
-
38
|
70 |
import torchaudio
|
71 |
-
39
|
72 |
from datasets import load_dataset
|
73 |
-
40
|
74 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
75 |
-
|
76 |
-
42
|
77 |
test_dataset = load_dataset("common_voice", "ro", split="test[:2%]").
|
78 |
-
|
79 |
-
44
|
80 |
processor = Wav2Vec2Processor.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
|
81 |
-
45
|
82 |
model = Wav2Vec2ForCTC.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
|
83 |
-
|
84 |
-
47
|
85 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
86 |
-
|
87 |
-
49
|
88 |
# Preprocessing the datasets.
|
89 |
-
50
|
90 |
# We need to read the aduio files as arrays
|
91 |
-
51
|
92 |
def speech_file_to_array_fn(batch):
|
93 |
-
52
|
94 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
95 |
-
53
|
96 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
97 |
-
54
|
98 |
return batch
|
99 |
-
|
100 |
-
56
|
101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
102 |
-
57
|
103 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
104 |
-
|
105 |
-
59
|
106 |
with torch.no_grad():
|
107 |
-
60
|
108 |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
109 |
-
|
110 |
-
62
|
111 |
predicted_ids = torch.argmax(logits, dim=-1)
|
112 |
-
|
113 |
-
64
|
114 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
115 |
-
65
|
116 |
print("Reference:", test_dataset["sentence"][:2])
|
117 |
-
66
|
118 |
```
|
119 |
-
|
120 |
-
|
121 |
-
69
|
122 |
## Evaluation
|
123 |
-
|
124 |
-
71
|
125 |
The model can be evaluated as follows on the {language} test data of Common Voice.
|
126 |
-
|
127 |
-
|
128 |
-
74
|
129 |
```python
|
130 |
-
75
|
131 |
import torch
|
132 |
-
76
|
133 |
import torchaudio
|
134 |
-
77
|
135 |
from datasets import load_dataset, load_metric
|
136 |
-
78
|
137 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
138 |
-
79
|
139 |
import re
|
140 |
-
|
141 |
-
81
|
142 |
test_dataset = load_dataset("common_voice", "ro", split="test")
|
143 |
-
82
|
144 |
wer = load_metric("wer")
|
145 |
-
|
146 |
-
84
|
147 |
processor = Wav2Vec2Processor.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
|
148 |
-
85
|
149 |
model = Wav2Vec2ForCTC.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
|
150 |
-
86
|
151 |
model.to("cuda")
|
152 |
-
|
153 |
-
|
154 |
-
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
|
155 |
-
89
|
156 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
157 |
-
|
158 |
-
91
|
159 |
# Preprocessing the datasets.
|
160 |
-
92
|
161 |
# We need to read the aduio files as arrays
|
162 |
-
93
|
163 |
def speech_file_to_array_fn(batch):
|
164 |
-
94
|
165 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
166 |
-
95
|
167 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
168 |
-
96
|
169 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
170 |
-
97
|
171 |
return batch
|
172 |
-
|
173 |
-
99
|
174 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
175 |
-
|
176 |
-
101
|
177 |
# Preprocessing the datasets.
|
178 |
-
102
|
179 |
# We need to read the aduio files as arrays
|
180 |
-
103
|
181 |
def evaluate(batch):
|
182 |
-
104
|
183 |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
184 |
-
|
185 |
-
106
|
186 |
with torch.no_grad():
|
187 |
-
107
|
188 |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
189 |
-
|
190 |
-
109
|
191 |
pred_ids = torch.argmax(logits, dim=-1)
|
192 |
-
110
|
193 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
194 |
-
111
|
195 |
return batch
|
196 |
-
|
197 |
-
113
|
198 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
199 |
-
|
200 |
-
115
|
201 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
202 |
-
116
|
203 |
```
|
204 |
-
|
205 |
-
118
|
206 |
**Test Result**: 37.10 %
|
207 |
-
|
208 |
-
|
209 |
-
121
|
210 |
## Training
|
211 |
-
|
212 |
-
123
|
213 |
The Common Voice `train`, `validation` datasets were used for training.
|
214 |
-
|
215 |
-
|
216 |
-
The script used for training can be found [here]()
|
217 |
-
126
|
|
|
1 |
---
|
|
|
2 |
language: ro
|
|
|
3 |
datasets:
|
|
|
4 |
- common_voice
|
|
|
5 |
tags:
|
|
|
6 |
- audio
|
|
|
7 |
- automatic-speech-recognition
|
|
|
8 |
- speech
|
|
|
9 |
- xlsr-fine-tuning-week
|
|
|
10 |
license: apache-2.0
|
|
|
11 |
model-index:
|
|
|
12 |
- name: XLSR Wav2Vec2 Romanian by George Mihaila
|
|
|
13 |
results:
|
|
|
14 |
- task:
|
|
|
15 |
name: Speech Recognition
|
|
|
16 |
type: automatic-speech-recognition
|
|
|
17 |
dataset:
|
|
|
18 |
name: Common Voice ro
|
|
|
19 |
type: common_voice
|
|
|
20 |
args: {lang_id}
|
|
|
21 |
metrics:
|
|
|
22 |
- name: Test WER
|
|
|
23 |
type: wer
|
24 |
+
value: 40.7
|
|
|
|
|
25 |
---
|
26 |
+
|
27 |
+
# Wav2Vec2-Large-XLSR-53-Romanian
|
28 |
+
|
|
|
|
|
29 |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Romanian using the [Common Voice](https://huggingface.co/datasets/common_voice)
|
|
|
30 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
31 |
+
|
|
|
32 |
## Usage
|
33 |
+
|
|
|
34 |
The model can be used directly (without a language model) as follows:
|
35 |
+
|
|
|
36 |
```python
|
|
|
37 |
import torch
|
|
|
38 |
import torchaudio
|
|
|
39 |
from datasets import load_dataset
|
|
|
40 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
41 |
+
|
|
|
42 |
test_dataset = load_dataset("common_voice", "ro", split="test[:2%]").
|
43 |
+
|
|
|
44 |
processor = Wav2Vec2Processor.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
|
|
|
45 |
model = Wav2Vec2ForCTC.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
|
46 |
+
|
|
|
47 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
48 |
+
|
|
|
49 |
# Preprocessing the datasets.
|
|
|
50 |
# We need to read the aduio files as arrays
|
|
|
51 |
def speech_file_to_array_fn(batch):
|
|
|
52 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
|
|
53 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
|
|
54 |
return batch
|
55 |
+
|
|
|
56 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|
|
57 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
58 |
+
|
|
|
59 |
with torch.no_grad():
|
|
|
60 |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
61 |
+
|
|
|
62 |
predicted_ids = torch.argmax(logits, dim=-1)
|
63 |
+
|
|
|
64 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
|
|
65 |
print("Reference:", test_dataset["sentence"][:2])
|
|
|
66 |
```
|
67 |
+
|
68 |
+
|
|
|
69 |
## Evaluation
|
70 |
+
|
|
|
71 |
The model can be evaluated as follows on the {language} test data of Common Voice.
|
72 |
+
|
73 |
+
|
|
|
74 |
```python
|
|
|
75 |
import torch
|
|
|
76 |
import torchaudio
|
|
|
77 |
from datasets import load_dataset, load_metric
|
|
|
78 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
79 |
import re
|
80 |
+
|
|
|
81 |
test_dataset = load_dataset("common_voice", "ro", split="test")
|
|
|
82 |
wer = load_metric("wer")
|
83 |
+
|
|
|
84 |
processor = Wav2Vec2Processor.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
|
|
|
85 |
model = Wav2Vec2ForCTC.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
|
|
|
86 |
model.to("cuda")
|
87 |
+
|
88 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
|
|
|
|
|
89 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
90 |
+
|
|
|
91 |
# Preprocessing the datasets.
|
|
|
92 |
# We need to read the aduio files as arrays
|
|
|
93 |
def speech_file_to_array_fn(batch):
|
|
|
94 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
|
|
95 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
|
|
96 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
|
|
97 |
return batch
|
98 |
+
|
|
|
99 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
100 |
+
|
|
|
101 |
# Preprocessing the datasets.
|
|
|
102 |
# We need to read the aduio files as arrays
|
|
|
103 |
def evaluate(batch):
|
|
|
104 |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
105 |
+
|
|
|
106 |
with torch.no_grad():
|
|
|
107 |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
108 |
+
|
|
|
109 |
pred_ids = torch.argmax(logits, dim=-1)
|
|
|
110 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
|
|
111 |
return batch
|
112 |
+
|
|
|
113 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
114 |
+
|
|
|
115 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
|
|
116 |
```
|
117 |
+
|
|
|
118 |
**Test Result**: 37.10 %
|
119 |
+
|
120 |
+
|
|
|
121 |
## Training
|
122 |
+
|
|
|
123 |
The Common Voice `train`, `validation` datasets were used for training.
|
124 |
+
|
125 |
+
The script used for training can be found [here]()
|
|
|
|