Edit model card

results

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1181
  • Accuracy: 0.9667
  • Precision: 0.9687
  • Recall: 0.9667
  • F1: 0.9666

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2806 0.9895 59 0.2562 0.8833 0.8896 0.8833 0.8824
0.047 1.9958 119 0.1286 0.9583 0.9596 0.9583 0.9584
0.0946 2.9853 178 0.1196 0.9667 0.9672 0.9667 0.9667
0.0037 3.9916 238 0.1181 0.9667 0.9687 0.9667 0.9666
0.0021 4.9979 298 0.1189 0.9667 0.9671 0.9667 0.9666
0.0039 5.9874 357 0.1515 0.9667 0.9672 0.9667 0.9667
0.0013 6.9937 417 0.1703 0.9667 0.9667 0.9667 0.9667
0.0012 8.0 477 0.1703 0.9583 0.9585 0.9583 0.9583
0.0011 8.9895 536 0.1841 0.9667 0.9672 0.9667 0.9667
0.001 9.8952 590 0.1797 0.9667 0.9672 0.9667 0.9667

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gnurt2041/distilbert-base-uncased-tuned

Finetuned
(6388)
this model