kobart-base-v2 / README.md
nazneen's picture
model documentation
9f62a16
|
raw
history blame
5.35 kB
metadata
language: ko
license: mit
tags:
  - bart

Model Card for kobart-base-v2

Model Details

Model Description

BART(Bidirectional and Auto-Regressive Transformers)λŠ” μž…λ ₯ ν…μŠ€νŠΈ 일뢀에 λ…Έμ΄μ¦ˆλ₯Ό μΆ”κ°€ν•˜μ—¬ 이λ₯Ό λ‹€μ‹œ μ›λ¬ΈμœΌλ‘œ λ³΅κ΅¬ν•˜λŠ” autoencoder의 ν˜•νƒœλ‘œ ν•™μŠ΅μ΄ λ©λ‹ˆλ‹€. ν•œκ΅­μ–΄ BART(μ΄ν•˜ KoBART) λŠ” λ…Όλ¬Έμ—μ„œ μ‚¬μš©λœ Text Infilling λ…Έμ΄μ¦ˆ ν•¨μˆ˜λ₯Ό μ‚¬μš©ν•˜μ—¬ 40GB μ΄μƒμ˜ ν•œκ΅­μ–΄ ν…μŠ€νŠΈμ— λŒ€ν•΄μ„œ ν•™μŠ΅ν•œ ν•œκ΅­μ–΄ encoder-decoder μ–Έμ–΄ λͺ¨λΈμž…λ‹ˆλ‹€. 이λ₯Ό 톡해 λ„μΆœλœ KoBART-baseλ₯Ό λ°°ν¬ν•©λ‹ˆλ‹€.

  • Developed by: More information needed
  • Shared by [Optional]: Heewon(Haven) Jeon
  • Model type: Feature Extraction
  • Language(s) (NLP): Korean
  • License: MIT
  • Parent Model: BART
  • Resources for more information:

Uses

Direct Use

This model can be used for the task of Feature Extraction.

Downstream Use [Optional]

More information needed.

Out-of-Scope Use

The model should not be used to intentionally create hostile or alienating environments for people.

Bias, Risks, and Limitations

Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

Training Details

Training Data

Data # of Sentences
Korean Wiki 5M
Other corpus 0.27B

ν•œκ΅­μ–΄ μœ„ν‚€ λ°±κ³Ό 이외, λ‰΄μŠ€, μ±…, λͺ¨λ‘μ˜ λ§λ­‰μΉ˜ v1.0(λŒ€ν™”, λ‰΄μŠ€, ...), μ²­μ™€λŒ€ ꡭ민청원 λ“±μ˜ λ‹€μ–‘ν•œ 데이터가 λͺ¨λΈ ν•™μŠ΅μ— μ‚¬μš©λ˜μ—ˆμŠ΅λ‹ˆλ‹€.

vocab μ‚¬μ΄μ¦ˆλŠ” 30,000 이며 λŒ€ν™”μ— 자주 μ“°μ΄λŠ” μ•„λž˜μ™€ 같은 이λͺ¨ν‹°μ½˜, 이λͺ¨μ§€ 등을 μΆ”κ°€ν•˜μ—¬ ν•΄λ‹Ή ν† ν°μ˜ 인식 λŠ₯λ ₯을 μ˜¬λ ΈμŠ΅λ‹ˆλ‹€.

πŸ˜€, 😁, πŸ˜†, πŸ˜…, 🀣, .. , :-), :), -), (-:...

Training Procedure

Tokenizer

tokenizers νŒ¨ν‚€μ§€μ˜ Character BPE tokenizer둜 ν•™μŠ΅λ˜μ—ˆμŠ΅λ‹ˆλ‹€.

Speeds, Sizes, Times

Model # of params Type # of layers # of heads ffn_dim hidden_dims
KoBART-base 124M Encoder 6 16 3072 768
Decoder 6 16 3072 768

Evaluation

Testing Data, Factors & Metrics

Testing Data

More information needed

Factors

More information needed

Metrics

More information needed

Results

NSMC

  • acc. : 0.901

The model authors also note in the GitHub Repo:

NSMC(acc) KorSTS(spearman) Question Pair(acc)
KoBART-base 90.24 81.66 94.34

Model Examination

More information needed

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: More information needed
  • Hours used: More information needed
  • Cloud Provider: More information needed
  • Compute Region: More information needed
  • Carbon Emitted: More information needed

Technical Specifications [optional]

Model Architecture and Objective

More information needed

Compute Infrastructure

More information needed

Hardware

More information needed

Software

More information needed.

Citation

BibTeX:

More information needed.

Glossary [optional]

More information needed

More Information [optional]

More information needed

Model Card Authors [optional]

Heewon(Haven) Jeon in collaboration with Ezi Ozoani and the Hugging Face team

Model Card Contact

The model authors note in the GitHub Repo: KoBART κ΄€λ ¨ μ΄μŠˆλŠ” 이곳에 μ˜¬λ €μ£Όμ„Έμš”.

How to Get Started with the Model

Use the code below to get started with the model.

Click to expand
 from transformers import PreTrainedTokenizerFast, BartModel

tokenizer = PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-base-v2')
model = BartModel.from_pretrained('gogamza/kobart-base-v2')