model documentation
#1
by
nazneen
- opened
README.md
CHANGED
@@ -1,23 +1,191 @@
|
|
1 |
---
|
2 |
language: ko
|
|
|
3 |
tags:
|
4 |
- bart
|
5 |
-
license: mit
|
6 |
---
|
7 |
|
8 |
-
## KoBART-base-v2
|
9 |
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
### Performance
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
NSMC
|
22 |
- acc. : 0.901
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
language: ko
|
3 |
+
license: mit
|
4 |
tags:
|
5 |
- bart
|
|
|
6 |
---
|
7 |
|
|
|
8 |
|
9 |
+
# Model Card for kobart-base-v2
|
10 |
|
11 |
+
|
12 |
+
# Model Details
|
13 |
+
|
14 |
+
## Model Description
|
15 |
+
|
16 |
+
[**BART**](https://arxiv.org/pdf/1910.13461.pdf)(**B**idirectional and **A**uto-**R**egressive **T**ransformers)λ μ
λ ₯ ν
μ€νΈ μΌλΆμ λ
Έμ΄μ¦λ₯Ό μΆκ°νμ¬ μ΄λ₯Ό λ€μ μλ¬ΈμΌλ‘ 볡ꡬνλ `autoencoder`μ ννλ‘ νμ΅μ΄ λ©λλ€. νκ΅μ΄ BART(μ΄ν **KoBART**) λ λ
Όλ¬Έμμ μ¬μ©λ `Text Infilling` λ
Έμ΄μ¦ ν¨μλ₯Ό μ¬μ©νμ¬ **40GB** μ΄μμ νκ΅μ΄ ν
μ€νΈμ λν΄μ νμ΅ν νκ΅μ΄ `encoder-decoder` μΈμ΄ λͺ¨λΈμ
λλ€. μ΄λ₯Ό ν΅ν΄ λμΆλ `KoBART-base`λ₯Ό λ°°ν¬ν©λλ€.
|
17 |
|
18 |
+
- **Developed by:** More information needed
|
19 |
+
- **Shared by [Optional]:** Heewon(Haven) Jeon
|
20 |
+
- **Model type:** Feature Extraction
|
21 |
+
- **Language(s) (NLP):** Korean
|
22 |
+
- **License:** MIT
|
23 |
+
- **Parent Model:** BART
|
24 |
+
- **Resources for more information:**
|
25 |
+
- [GitHub Repo](https://github.com/haven-jeon/KoBART)
|
26 |
+
- [Model Demo Space](https://huggingface.co/spaces/gogamza/kobart-summarization)
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
# Uses
|
31 |
+
|
32 |
+
|
33 |
+
## Direct Use
|
34 |
+
This model can be used for the task of Feature Extraction.
|
35 |
+
|
36 |
+
## Downstream Use [Optional]
|
37 |
+
|
38 |
+
More information needed.
|
39 |
+
|
40 |
+
## Out-of-Scope Use
|
41 |
+
|
42 |
+
The model should not be used to intentionally create hostile or alienating environments for people.
|
43 |
+
|
44 |
+
# Bias, Risks, and Limitations
|
45 |
+
|
46 |
+
|
47 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
## Recommendations
|
52 |
+
|
53 |
+
|
54 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
55 |
+
|
56 |
+
# Training Details
|
57 |
+
|
58 |
+
## Training Data
|
59 |
+
|
60 |
+
| Data | # of Sentences |
|
61 |
+
|-------|---------------:|
|
62 |
+
| Korean Wiki | 5M |
|
63 |
+
| Other corpus | 0.27B |
|
64 |
+
|
65 |
+
νκ΅μ΄ μν€ λ°±κ³Ό μ΄μΈ, λ΄μ€, μ±
, [λͺ¨λμ λ§λμΉ v1.0(λν, λ΄μ€, ...)](https://corpus.korean.go.kr/), [μ²μλ κ΅λ―Όμ²μ](https://github.com/akngs/petitions) λ±μ λ€μν λ°μ΄ν°κ° λͺ¨λΈ νμ΅μ μ¬μ©λμμ΅λλ€.
|
66 |
+
|
67 |
+
`vocab` μ¬μ΄μ¦λ 30,000 μ΄λ©° λνμ μμ£Ό μ°μ΄λ μλμ κ°μ μ΄λͺ¨ν°μ½, μ΄λͺ¨μ§ λ±μ μΆκ°νμ¬ ν΄λΉ ν ν°μ μΈμ λ₯λ ₯μ μ¬λ Έμ΅λλ€.
|
68 |
+
> π, π, π, π
, π€£, .. , `:-)`, `:)`, `-)`, `(-:`...
|
69 |
+
|
70 |
+
## Training Procedure
|
71 |
+
|
72 |
+
|
73 |
+
### Tokenizer
|
74 |
+
|
75 |
+
[`tokenizers`](https://github.com/huggingface/tokenizers) ν¨ν€μ§μ `Character BPE tokenizer`λ‘ νμ΅λμμ΅λλ€.
|
76 |
+
|
77 |
+
|
78 |
|
|
|
79 |
|
80 |
+
|
81 |
+
### Speeds, Sizes, Times
|
82 |
+
| Model | # of params | Type | # of layers | # of heads | ffn_dim | hidden_dims |
|
83 |
+
|--------------|:----:|:-------:|--------:|--------:|--------:|--------------:|
|
84 |
+
| `KoBART-base` | 124M | Encoder | 6 | 16 | 3072 | 768 |
|
85 |
+
| | | Decoder | 6 | 16 | 3072 | 768 |
|
86 |
+
|
87 |
+
|
88 |
+
# Evaluation
|
89 |
+
|
90 |
+
|
91 |
+
## Testing Data, Factors & Metrics
|
92 |
+
|
93 |
+
### Testing Data
|
94 |
+
|
95 |
+
More information needed
|
96 |
+
|
97 |
+
|
98 |
+
### Factors
|
99 |
+
More information needed
|
100 |
+
|
101 |
+
### Metrics
|
102 |
+
|
103 |
+
More information needed
|
104 |
+
|
105 |
+
|
106 |
+
## Results
|
107 |
+
|
108 |
NSMC
|
109 |
- acc. : 0.901
|
110 |
|
111 |
+
The model authors also note in the [GitHub Repo](https://github.com/haven-jeon/KoBART):
|
112 |
+
|
113 |
+
| | [NSMC](https://github.com/e9t/nsmc)(acc) | [KorSTS](https://github.com/kakaobrain/KorNLUDatasets)(spearman) | [Question Pair](https://github.com/aisolab/nlp_classification/tree/master/BERT_pairwise_text_classification/qpair)(acc) |
|
114 |
+
|---|---|---|---|
|
115 |
+
| **KoBART-base** | 90.24 | 81.66 | 94.34 |
|
116 |
+
|
117 |
+
# Model Examination
|
118 |
+
|
119 |
+
More information needed
|
120 |
+
|
121 |
+
# Environmental Impact
|
122 |
+
|
123 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
124 |
+
|
125 |
+
- **Hardware Type:** More information needed
|
126 |
+
- **Hours used:** More information needed
|
127 |
+
- **Cloud Provider:** More information needed
|
128 |
+
- **Compute Region:** More information needed
|
129 |
+
- **Carbon Emitted:** More information needed
|
130 |
+
|
131 |
+
# Technical Specifications [optional]
|
132 |
+
|
133 |
+
## Model Architecture and Objective
|
134 |
+
|
135 |
+
More information needed
|
136 |
+
|
137 |
+
## Compute Infrastructure
|
138 |
+
|
139 |
+
More information needed
|
140 |
+
|
141 |
+
### Hardware
|
142 |
+
|
143 |
+
|
144 |
+
More information needed
|
145 |
+
|
146 |
+
### Software
|
147 |
+
|
148 |
+
More information needed.
|
149 |
+
|
150 |
+
# Citation
|
151 |
+
|
152 |
+
|
153 |
+
**BibTeX:**
|
154 |
+
|
155 |
+
|
156 |
+
More information needed.
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
# Glossary [optional]
|
163 |
+
More information needed
|
164 |
+
|
165 |
+
# More Information [optional]
|
166 |
+
More information needed
|
167 |
+
|
168 |
+
|
169 |
+
# Model Card Authors [optional]
|
170 |
+
|
171 |
+
Heewon(Haven) Jeon in collaboration with Ezi Ozoani and the Hugging Face team
|
172 |
+
|
173 |
+
|
174 |
+
# Model Card Contact
|
175 |
+
The model authors note in the [GitHub Repo](https://github.com/haven-jeon/KoBART):
|
176 |
+
`KoBART` κ΄λ ¨ μ΄μλ [μ΄κ³³](https://github.com/SKT-AI/KoBART/issues)μ μ¬λ €μ£ΌμΈμ.
|
177 |
+
|
178 |
+
# How to Get Started with the Model
|
179 |
+
|
180 |
+
Use the code below to get started with the model.
|
181 |
+
|
182 |
+
<details>
|
183 |
+
<summary> Click to expand </summary>
|
184 |
+
|
185 |
+
```python
|
186 |
+
from transformers import PreTrainedTokenizerFast, BartModel
|
187 |
+
|
188 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-base-v2')
|
189 |
+
model = BartModel.from_pretrained('gogamza/kobart-base-v2')
|
190 |
+
```
|
191 |
+
</details>
|