|
--- |
|
library_name: transformers |
|
tags: |
|
- art |
|
datasets: |
|
- gokaygokay/prompt_description_stable_diffusion_3k |
|
language: |
|
- en |
|
pipeline_tag: text2text-generation |
|
--- |
|
|
|
``` |
|
pip install -q -U transformers trl accelerate peft bitsandbytes |
|
``` |
|
|
|
``` |
|
from transformers import AutoModelForCausalLM, GenerationConfig, AutoTokenizer |
|
import torch |
|
import os |
|
|
|
model_id = "gokaygokay/tiny_llama_chat_description_to_prompt" |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, load_in_8bit=False, |
|
device_map="auto", |
|
trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
def generate_response(user_input): |
|
|
|
prompt = f"<|im_start|>user\n{user_input}<|im_end|>\n<|im_start|>assistant:" |
|
|
|
inputs = tokenizer([prompt], return_tensors="pt") |
|
generation_config = GenerationConfig(penalty_alpha=0.6,do_sample = True, |
|
top_k=5,temperature=0.9,repetition_penalty=1.2, |
|
max_new_tokens=100,pad_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to('cuda') |
|
|
|
outputs = model.generate(**inputs, generation_config=generation_config) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |