gokuls's picture
End of training
1357e5e
metadata
base_model: gokuls/HBERTv1_48_L2_H256_A4
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: HBERTv1_48_L2_H256_A4_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8362026561731432

HBERTv1_48_L2_H256_A4_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L2_H256_A4 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6816
  • Accuracy: 0.8362

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.0609 1.0 180 2.0828 0.5416
1.7322 2.0 360 1.2770 0.6995
1.1671 3.0 540 0.9723 0.7521
0.8923 4.0 720 0.8411 0.7723
0.7282 5.0 900 0.7748 0.7890
0.6334 6.0 1080 0.7396 0.8042
0.5372 7.0 1260 0.7192 0.8146
0.4854 8.0 1440 0.7008 0.8229
0.4327 9.0 1620 0.6971 0.8224
0.3975 10.0 1800 0.6840 0.8323
0.3598 11.0 1980 0.6947 0.8313
0.334 12.0 2160 0.6791 0.8337
0.317 13.0 2340 0.6859 0.8323
0.2969 14.0 2520 0.6816 0.8347
0.2918 15.0 2700 0.6816 0.8362

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0