gokuls's picture
End of training
b03fdeb
---
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: hBERTv1_data_aug_mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 1.0
- name: F1
type: f1
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hBERTv1_data_aug_mrpc
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1](https://huggingface.co/gokuls/bert_12_layer_model_v1) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001
- Accuracy: 1.0
- F1: 1.0
- Combined Score: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.1151 | 1.0 | 980 | 0.0045 | 0.9975 | 0.9982 | 0.9979 |
| 0.0108 | 2.0 | 1960 | 0.0001 | 1.0 | 1.0 | 1.0 |
| 0.0063 | 3.0 | 2940 | 0.0001 | 1.0 | 1.0 | 1.0 |
| 0.0054 | 4.0 | 3920 | 0.0001 | 1.0 | 1.0 | 1.0 |
| 0.004 | 5.0 | 4900 | 0.0001 | 1.0 | 1.0 | 1.0 |
| 0.0053 | 6.0 | 5880 | 0.0002 | 1.0 | 1.0 | 1.0 |
| 0.0046 | 7.0 | 6860 | 0.0003 | 1.0 | 1.0 | 1.0 |
| 0.0116 | 8.0 | 7840 | 0.0150 | 0.9975 | 0.9982 | 0.9979 |
| 0.0093 | 9.0 | 8820 | 0.0015 | 1.0 | 1.0 | 1.0 |
| 0.0123 | 10.0 | 9800 | 0.0164 | 0.9975 | 0.9982 | 0.9979 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.14.0a0+410ce96
- Datasets 2.10.1
- Tokenizers 0.13.2