|
--- |
|
language: |
|
- en |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: hBERTv1_data_aug_mrpc |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MRPC |
|
type: glue |
|
args: mrpc |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 1.0 |
|
- name: F1 |
|
type: f1 |
|
value: 1.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hBERTv1_data_aug_mrpc |
|
|
|
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1](https://huggingface.co/gokuls/bert_12_layer_model_v1) on the GLUE MRPC dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0001 |
|
- Accuracy: 1.0 |
|
- F1: 1.0 |
|
- Combined Score: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.1151 | 1.0 | 980 | 0.0045 | 0.9975 | 0.9982 | 0.9979 | |
|
| 0.0108 | 2.0 | 1960 | 0.0001 | 1.0 | 1.0 | 1.0 | |
|
| 0.0063 | 3.0 | 2940 | 0.0001 | 1.0 | 1.0 | 1.0 | |
|
| 0.0054 | 4.0 | 3920 | 0.0001 | 1.0 | 1.0 | 1.0 | |
|
| 0.004 | 5.0 | 4900 | 0.0001 | 1.0 | 1.0 | 1.0 | |
|
| 0.0053 | 6.0 | 5880 | 0.0002 | 1.0 | 1.0 | 1.0 | |
|
| 0.0046 | 7.0 | 6860 | 0.0003 | 1.0 | 1.0 | 1.0 | |
|
| 0.0116 | 8.0 | 7840 | 0.0150 | 0.9975 | 0.9982 | 0.9979 | |
|
| 0.0093 | 9.0 | 8820 | 0.0015 | 1.0 | 1.0 | 1.0 | |
|
| 0.0123 | 10.0 | 9800 | 0.0164 | 0.9975 | 0.9982 | 0.9979 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.14.0a0+410ce96 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|