hBERTv2_wnli
This model is a fine-tuned version of gokuls/bert_12_layer_model_v2 on the GLUE WNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.6833
- Accuracy: 0.5634
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7351 | 1.0 | 3 | 0.7260 | 0.5211 |
0.7223 | 2.0 | 6 | 0.6833 | 0.5634 |
0.7189 | 3.0 | 9 | 0.7110 | 0.4507 |
0.708 | 4.0 | 12 | 0.7059 | 0.5352 |
0.7032 | 5.0 | 15 | 0.6925 | 0.5352 |
0.6987 | 6.0 | 18 | 0.7121 | 0.4225 |
0.7109 | 7.0 | 21 | 0.6928 | 0.5352 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.14.0a0+410ce96
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train gokuls/hBERTv2_wnli
Evaluation results
- Accuracy on GLUE WNLIvalidation set self-reported0.563