gokuls's picture
End of training
d9f3054 verified
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
model-index:
  - name: whisper-base-speech-commands
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: speech_commands
          type: speech_commands
          config: v0.02
          split: None
          args: v0.02
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8066546762589928

whisper-base-speech-commands

This model is a fine-tuned version of openai/whisper-base on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1307
  • Accuracy: 0.8067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2604 1.0 412 1.0617 0.7977
0.1168 2.0 824 1.0024 0.8017
0.1527 3.0 1236 0.9757 0.8022
0.0637 4.0 1648 1.0066 0.8004
0.0631 5.0 2060 1.0504 0.8053
0.0554 6.0 2472 1.1307 0.8067
0.1075 7.0 2884 1.1664 0.8017
0.021 8.0 3296 1.4746 0.8044
0.0144 9.0 3708 1.3729 0.8044
0.0158 10.0 4120 1.3561 0.8040
0.0504 11.0 4532 1.3289 0.8053

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1