gpt_train_12_128
This model is a fine-tuned version of openai-community/gpt2 on the gokuls/wiki_book_corpus_raw_dataset_tiny dataset. It achieves the following results on the evaluation set:
- Loss: 10.0781
- Accuracy: 0.0781
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
10.8438 | 0.0001 | 1 | 10.8438 | 0.0103 |
10.8359 | 0.0001 | 2 | 10.8438 | 0.0103 |
10.8438 | 0.0002 | 3 | 10.8438 | 0.0103 |
10.8359 | 0.0003 | 4 | 10.8438 | 0.0103 |
10.8438 | 0.0004 | 5 | 10.8438 | 0.0103 |
10.8438 | 0.0004 | 6 | 10.8438 | 0.0103 |
10.8359 | 0.0005 | 7 | 10.8438 | 0.0103 |
10.8359 | 0.0006 | 8 | 10.8438 | 0.0103 |
10.8438 | 0.0007 | 9 | 10.8438 | 0.0103 |
10.8359 | 0.0007 | 10 | 10.8438 | 0.0103 |
10.8359 | 0.0008 | 11 | 10.8438 | 0.0103 |
10.8438 | 0.0009 | 12 | 10.8438 | 0.0103 |
10.8438 | 0.0009 | 13 | 10.8438 | 0.0103 |
10.8359 | 0.0010 | 14 | 10.8438 | 0.0103 |
10.8359 | 0.0011 | 15 | 10.8438 | 0.0103 |
10.8438 | 0.0012 | 16 | 10.8438 | 0.0103 |
10.8359 | 0.0012 | 17 | 10.8438 | 0.0103 |
10.8438 | 0.0013 | 18 | 10.8281 | 0.0113 |
10.8203 | 0.0014 | 19 | 10.8125 | 0.0116 |
10.8203 | 0.0015 | 20 | 10.8047 | 0.0117 |
10.8047 | 0.0015 | 21 | 10.7891 | 0.0118 |
10.7969 | 0.0016 | 22 | 10.7734 | 0.0118 |
10.7812 | 0.0017 | 23 | 10.7656 | 0.0118 |
10.7656 | 0.0017 | 24 | 10.75 | 0.0119 |
10.7578 | 0.0018 | 25 | 10.7344 | 0.0121 |
10.75 | 0.0019 | 26 | 10.7266 | 0.0124 |
10.7344 | 0.0020 | 27 | 10.7188 | 0.0131 |
10.7266 | 0.0020 | 28 | 10.7031 | 0.0144 |
10.7109 | 0.0021 | 29 | 10.6953 | 0.0165 |
10.7031 | 0.0022 | 30 | 10.6875 | 0.0196 |
10.7031 | 0.0023 | 31 | 10.6797 | 0.0236 |
10.6875 | 0.0023 | 32 | 10.6719 | 0.0282 |
10.6797 | 0.0024 | 33 | 10.6641 | 0.0330 |
10.6719 | 0.0025 | 34 | 10.6641 | 0.0375 |
10.6719 | 0.0025 | 35 | 10.6562 | 0.0409 |
10.6719 | 0.0026 | 36 | 10.6484 | 0.0437 |
10.6484 | 0.0027 | 37 | 10.6484 | 0.0461 |
10.6562 | 0.0028 | 38 | 10.6406 | 0.0481 |
10.6484 | 0.0028 | 39 | 10.6406 | 0.0498 |
10.6484 | 0.0029 | 40 | 10.6328 | 0.0511 |
10.6406 | 0.0030 | 41 | 10.6328 | 0.0521 |
10.6406 | 0.0031 | 42 | 10.625 | 0.0529 |
10.6406 | 0.0031 | 43 | 10.625 | 0.0535 |
10.625 | 0.0032 | 44 | 10.6172 | 0.0539 |
10.625 | 0.0033 | 45 | 10.6172 | 0.0542 |
10.625 | 0.0033 | 46 | 10.6172 | 0.0543 |
10.6172 | 0.0034 | 47 | 10.6094 | 0.0544 |
10.625 | 0.0035 | 48 | 10.6094 | 0.0545 |
10.6172 | 0.0036 | 49 | 10.6016 | 0.0545 |
10.6016 | 0.0036 | 50 | 10.6016 | 0.0545 |
10.6016 | 0.0037 | 51 | 10.6016 | 0.0545 |
10.6016 | 0.0038 | 52 | 10.5938 | 0.0546 |
10.6016 | 0.0039 | 53 | 10.5938 | 0.0545 |
10.5938 | 0.0039 | 54 | 10.5938 | 0.0545 |
10.6016 | 0.0040 | 55 | 10.5859 | 0.0545 |
10.5859 | 0.0041 | 56 | 10.5859 | 0.0545 |
10.6016 | 0.0041 | 57 | 10.5859 | 0.0545 |
10.5859 | 0.0042 | 58 | 10.5859 | 0.0546 |
10.5859 | 0.0043 | 59 | 10.5781 | 0.0547 |
10.5781 | 0.0044 | 60 | 10.5781 | 0.0548 |
10.5781 | 0.0044 | 61 | 10.5781 | 0.0550 |
10.5781 | 0.0045 | 62 | 10.5703 | 0.0553 |
10.5781 | 0.0046 | 63 | 10.5703 | 0.0557 |
10.5703 | 0.0046 | 64 | 10.5703 | 0.0561 |
10.5781 | 0.0047 | 65 | 10.5625 | 0.0566 |
10.5625 | 0.0048 | 66 | 10.5625 | 0.0570 |
10.5781 | 0.0049 | 67 | 10.5625 | 0.0573 |
10.5703 | 0.0049 | 68 | 10.5547 | 0.0575 |
10.5625 | 0.0050 | 69 | 10.5547 | 0.0577 |
10.5625 | 0.0051 | 70 | 10.5547 | 0.0578 |
10.5625 | 0.0052 | 71 | 10.5547 | 0.0579 |
10.5547 | 0.0052 | 72 | 10.5469 | 0.0580 |
10.5469 | 0.0053 | 73 | 10.5469 | 0.0580 |
10.5469 | 0.0054 | 74 | 10.5469 | 0.0580 |
10.5547 | 0.0054 | 75 | 10.5391 | 0.0580 |
10.5547 | 0.0055 | 76 | 10.5391 | 0.0580 |
10.5469 | 0.0056 | 77 | 10.5391 | 0.0582 |
10.5469 | 0.0057 | 78 | 10.5391 | 0.0582 |
10.5312 | 0.0057 | 79 | 10.5312 | 0.0584 |
10.5312 | 0.0058 | 80 | 10.5312 | 0.0586 |
10.5312 | 0.0059 | 81 | 10.5312 | 0.0590 |
10.5312 | 0.0060 | 82 | 10.5312 | 0.0593 |
10.5312 | 0.0060 | 83 | 10.5234 | 0.0597 |
10.5234 | 0.0061 | 84 | 10.5234 | 0.0600 |
10.5312 | 0.0062 | 85 | 10.5234 | 0.0602 |
10.5312 | 0.0062 | 86 | 10.5234 | 0.0603 |
10.5234 | 0.0063 | 87 | 10.5156 | 0.0604 |
10.5156 | 0.0064 | 88 | 10.5156 | 0.0605 |
10.5234 | 0.0065 | 89 | 10.5156 | 0.0606 |
10.5156 | 0.0065 | 90 | 10.5156 | 0.0606 |
10.5156 | 0.0066 | 91 | 10.5078 | 0.0606 |
10.5156 | 0.0067 | 92 | 10.5078 | 0.0605 |
10.5156 | 0.0068 | 93 | 10.5078 | 0.0603 |
10.5156 | 0.0068 | 94 | 10.5078 | 0.0602 |
10.5234 | 0.0069 | 95 | 10.5 | 0.0601 |
10.5156 | 0.0070 | 96 | 10.5 | 0.0602 |
10.5078 | 0.0070 | 97 | 10.5 | 0.0603 |
10.5 | 0.0071 | 98 | 10.5 | 0.0603 |
10.5078 | 0.0072 | 99 | 10.5 | 0.0604 |
10.5078 | 0.0073 | 100 | 10.4922 | 0.0606 |
10.5 | 0.0073 | 101 | 10.4922 | 0.0607 |
10.4922 | 0.0074 | 102 | 10.4922 | 0.0609 |
10.4922 | 0.0075 | 103 | 10.4922 | 0.0612 |
10.4844 | 0.0076 | 104 | 10.4844 | 0.0614 |
10.4922 | 0.0076 | 105 | 10.4844 | 0.0617 |
10.4922 | 0.0077 | 106 | 10.4844 | 0.0619 |
10.4844 | 0.0078 | 107 | 10.4844 | 0.0622 |
10.4922 | 0.0078 | 108 | 10.4766 | 0.0625 |
10.4844 | 0.0079 | 109 | 10.4766 | 0.0628 |
10.4766 | 0.0080 | 110 | 10.4766 | 0.0630 |
10.4844 | 0.0081 | 111 | 10.4766 | 0.0632 |
10.4766 | 0.0081 | 112 | 10.4766 | 0.0634 |
10.4844 | 0.0082 | 113 | 10.4688 | 0.0636 |
10.4766 | 0.0083 | 114 | 10.4688 | 0.0638 |
10.4766 | 0.0084 | 115 | 10.4688 | 0.0640 |
10.4844 | 0.0084 | 116 | 10.4688 | 0.0643 |
10.4531 | 0.0085 | 117 | 10.4609 | 0.0644 |
10.4609 | 0.0086 | 118 | 10.4609 | 0.0647 |
10.4609 | 0.0086 | 119 | 10.4609 | 0.0648 |
10.4688 | 0.0087 | 120 | 10.4609 | 0.0649 |
10.4609 | 0.0088 | 121 | 10.4609 | 0.0651 |
10.4609 | 0.0089 | 122 | 10.4531 | 0.0653 |
10.4531 | 0.0089 | 123 | 10.4531 | 0.0656 |
10.4531 | 0.0090 | 124 | 10.4531 | 0.0659 |
10.4531 | 0.0091 | 125 | 10.4531 | 0.0660 |
10.4531 | 0.0092 | 126 | 10.4453 | 0.0662 |
10.4531 | 0.0092 | 127 | 10.4453 | 0.0664 |
10.4453 | 0.0093 | 128 | 10.4453 | 0.0667 |
10.4531 | 0.0094 | 129 | 10.4453 | 0.0670 |
10.4375 | 0.0094 | 130 | 10.4453 | 0.0673 |
10.4453 | 0.0095 | 131 | 10.4375 | 0.0676 |
10.4375 | 0.0096 | 132 | 10.4375 | 0.0678 |
10.4375 | 0.0097 | 133 | 10.4375 | 0.0679 |
10.4297 | 0.0097 | 134 | 10.4375 | 0.0679 |
10.4453 | 0.0098 | 135 | 10.4297 | 0.0678 |
10.4375 | 0.0099 | 136 | 10.4297 | 0.0677 |
10.4375 | 0.0100 | 137 | 10.4297 | 0.0677 |
10.4219 | 0.0100 | 138 | 10.4297 | 0.0677 |
10.4375 | 0.0101 | 139 | 10.4219 | 0.0678 |
10.4297 | 0.0102 | 140 | 10.4219 | 0.0680 |
10.4297 | 0.0102 | 141 | 10.4219 | 0.0682 |
10.4219 | 0.0103 | 142 | 10.4219 | 0.0684 |
10.4219 | 0.0104 | 143 | 10.4219 | 0.0687 |
10.4219 | 0.0105 | 144 | 10.4141 | 0.0689 |
10.4219 | 0.0105 | 145 | 10.4141 | 0.0692 |
10.4141 | 0.0106 | 146 | 10.4141 | 0.0693 |
10.4062 | 0.0107 | 147 | 10.4141 | 0.0695 |
10.4141 | 0.0108 | 148 | 10.4062 | 0.0696 |
10.4141 | 0.0108 | 149 | 10.4062 | 0.0697 |
10.4219 | 0.0109 | 150 | 10.4062 | 0.0697 |
10.4062 | 0.0110 | 151 | 10.4062 | 0.0698 |
10.4141 | 0.0110 | 152 | 10.4062 | 0.0700 |
10.4141 | 0.0111 | 153 | 10.3984 | 0.0701 |
10.4219 | 0.0112 | 154 | 10.3984 | 0.0702 |
10.4141 | 0.0113 | 155 | 10.3984 | 0.0704 |
10.4062 | 0.0113 | 156 | 10.3984 | 0.0705 |
10.4062 | 0.0114 | 157 | 10.3906 | 0.0707 |
10.3906 | 0.0115 | 158 | 10.3906 | 0.0708 |
10.3906 | 0.0116 | 159 | 10.3906 | 0.0710 |
10.3984 | 0.0116 | 160 | 10.3906 | 0.0711 |
10.3984 | 0.0117 | 161 | 10.3906 | 0.0711 |
10.3906 | 0.0118 | 162 | 10.3828 | 0.0712 |
10.3906 | 0.0118 | 163 | 10.3828 | 0.0712 |
10.3906 | 0.0119 | 164 | 10.3828 | 0.0714 |
10.3828 | 0.0120 | 165 | 10.3828 | 0.0715 |
10.375 | 0.0121 | 166 | 10.375 | 0.0716 |
10.3828 | 0.0121 | 167 | 10.375 | 0.0717 |
10.3828 | 0.0122 | 168 | 10.375 | 0.0718 |
10.3828 | 0.0123 | 169 | 10.375 | 0.0719 |
10.3828 | 0.0124 | 170 | 10.375 | 0.0721 |
10.3672 | 0.0124 | 171 | 10.3672 | 0.0721 |
10.375 | 0.0125 | 172 | 10.3672 | 0.0721 |
10.3594 | 0.0126 | 173 | 10.3672 | 0.0721 |
10.375 | 0.0126 | 174 | 10.3672 | 0.0720 |
10.3594 | 0.0127 | 175 | 10.3594 | 0.0721 |
10.3672 | 0.0128 | 176 | 10.3594 | 0.0722 |
10.375 | 0.0129 | 177 | 10.3594 | 0.0723 |
10.3672 | 0.0129 | 178 | 10.3594 | 0.0726 |
10.3672 | 0.0130 | 179 | 10.3594 | 0.0727 |
10.3594 | 0.0131 | 180 | 10.3516 | 0.0728 |
10.3672 | 0.0132 | 181 | 10.3516 | 0.0729 |
10.3594 | 0.0132 | 182 | 10.3516 | 0.0730 |
10.3516 | 0.0133 | 183 | 10.3516 | 0.0731 |
10.3594 | 0.0134 | 184 | 10.3516 | 0.0732 |
10.3516 | 0.0134 | 185 | 10.3438 | 0.0733 |
10.3516 | 0.0135 | 186 | 10.3438 | 0.0733 |
10.3438 | 0.0136 | 187 | 10.3438 | 0.0734 |
10.3516 | 0.0137 | 188 | 10.3438 | 0.0734 |
10.3516 | 0.0137 | 189 | 10.3359 | 0.0735 |
10.3438 | 0.0138 | 190 | 10.3359 | 0.0735 |
10.3516 | 0.0139 | 191 | 10.3359 | 0.0735 |
10.3359 | 0.0139 | 192 | 10.3359 | 0.0737 |
10.3359 | 0.0140 | 193 | 10.3359 | 0.0737 |
10.3359 | 0.0141 | 194 | 10.3281 | 0.0736 |
10.3359 | 0.0142 | 195 | 10.3281 | 0.0736 |
10.3359 | 0.0142 | 196 | 10.3281 | 0.0736 |
10.3281 | 0.0143 | 197 | 10.3281 | 0.0737 |
10.3359 | 0.0144 | 198 | 10.3281 | 0.0738 |
10.3203 | 0.0145 | 199 | 10.3203 | 0.0740 |
10.3359 | 0.0145 | 200 | 10.3203 | 0.0741 |
10.3359 | 0.0146 | 201 | 10.3203 | 0.0742 |
10.3281 | 0.0147 | 202 | 10.3203 | 0.0743 |
10.3203 | 0.0147 | 203 | 10.3125 | 0.0743 |
10.3203 | 0.0148 | 204 | 10.3125 | 0.0743 |
10.3281 | 0.0149 | 205 | 10.3125 | 0.0743 |
10.3125 | 0.0150 | 206 | 10.3125 | 0.0741 |
10.3125 | 0.0150 | 207 | 10.3125 | 0.0740 |
10.3047 | 0.0151 | 208 | 10.3047 | 0.0740 |
10.3125 | 0.0152 | 209 | 10.3047 | 0.0741 |
10.3125 | 0.0153 | 210 | 10.3047 | 0.0742 |
10.3203 | 0.0153 | 211 | 10.3047 | 0.0743 |
10.3047 | 0.0154 | 212 | 10.3047 | 0.0744 |
10.3203 | 0.0155 | 213 | 10.2969 | 0.0745 |
10.3125 | 0.0155 | 214 | 10.2969 | 0.0747 |
10.3047 | 0.0156 | 215 | 10.2969 | 0.0749 |
10.2969 | 0.0157 | 216 | 10.2969 | 0.0750 |
10.3047 | 0.0158 | 217 | 10.2969 | 0.0750 |
10.2969 | 0.0158 | 218 | 10.2891 | 0.0749 |
10.2891 | 0.0159 | 219 | 10.2891 | 0.0747 |
10.2969 | 0.0160 | 220 | 10.2891 | 0.0744 |
10.2969 | 0.0161 | 221 | 10.2891 | 0.0742 |
10.2891 | 0.0161 | 222 | 10.2891 | 0.0741 |
10.2891 | 0.0162 | 223 | 10.2812 | 0.0742 |
10.2891 | 0.0163 | 224 | 10.2812 | 0.0743 |
10.2891 | 0.0163 | 225 | 10.2812 | 0.0746 |
10.2969 | 0.0164 | 226 | 10.2812 | 0.0748 |
10.2812 | 0.0165 | 227 | 10.2734 | 0.0749 |
10.2891 | 0.0166 | 228 | 10.2734 | 0.0750 |
10.2734 | 0.0166 | 229 | 10.2734 | 0.0751 |
10.2969 | 0.0167 | 230 | 10.2734 | 0.0750 |
10.2656 | 0.0168 | 231 | 10.2734 | 0.0749 |
10.2734 | 0.0169 | 232 | 10.2656 | 0.0747 |
10.2734 | 0.0169 | 233 | 10.2656 | 0.0747 |
10.2734 | 0.0170 | 234 | 10.2656 | 0.0746 |
10.2656 | 0.0171 | 235 | 10.2656 | 0.0747 |
10.2656 | 0.0171 | 236 | 10.2656 | 0.0748 |
10.2734 | 0.0172 | 237 | 10.2578 | 0.0749 |
10.2656 | 0.0173 | 238 | 10.2578 | 0.0752 |
10.2734 | 0.0174 | 239 | 10.2578 | 0.0755 |
10.2578 | 0.0174 | 240 | 10.2578 | 0.0756 |
10.2734 | 0.0175 | 241 | 10.2578 | 0.0756 |
10.2656 | 0.0176 | 242 | 10.25 | 0.0756 |
10.2578 | 0.0177 | 243 | 10.25 | 0.0756 |
10.2578 | 0.0177 | 244 | 10.25 | 0.0756 |
10.2578 | 0.0178 | 245 | 10.25 | 0.0756 |
10.2578 | 0.0179 | 246 | 10.25 | 0.0756 |
10.2578 | 0.0179 | 247 | 10.2422 | 0.0757 |
10.2578 | 0.0180 | 248 | 10.2422 | 0.0758 |
10.2422 | 0.0181 | 249 | 10.2422 | 0.0759 |
10.2422 | 0.0182 | 250 | 10.2422 | 0.0759 |
10.2422 | 0.0182 | 251 | 10.2422 | 0.0759 |
10.2422 | 0.0183 | 252 | 10.2344 | 0.0759 |
10.2422 | 0.0184 | 253 | 10.2344 | 0.0759 |
10.2422 | 0.0185 | 254 | 10.2344 | 0.0759 |
10.2422 | 0.0185 | 255 | 10.2344 | 0.0761 |
10.2422 | 0.0186 | 256 | 10.2344 | 0.0761 |
10.2422 | 0.0187 | 257 | 10.2266 | 0.0760 |
10.2422 | 0.0187 | 258 | 10.2266 | 0.0760 |
10.2344 | 0.0188 | 259 | 10.2266 | 0.0759 |
10.2344 | 0.0189 | 260 | 10.2266 | 0.0759 |
10.2266 | 0.0190 | 261 | 10.2266 | 0.0760 |
10.2188 | 0.0190 | 262 | 10.2188 | 0.0760 |
10.2266 | 0.0191 | 263 | 10.2188 | 0.0762 |
10.2266 | 0.0192 | 264 | 10.2188 | 0.0762 |
10.2188 | 0.0193 | 265 | 10.2188 | 0.0762 |
10.2266 | 0.0193 | 266 | 10.2188 | 0.0762 |
10.2188 | 0.0194 | 267 | 10.2109 | 0.0762 |
10.2109 | 0.0195 | 268 | 10.2109 | 0.0763 |
10.2109 | 0.0195 | 269 | 10.2109 | 0.0762 |
10.2109 | 0.0196 | 270 | 10.2109 | 0.0761 |
10.2188 | 0.0197 | 271 | 10.2109 | 0.0761 |
10.2109 | 0.0198 | 272 | 10.2031 | 0.0760 |
10.2188 | 0.0198 | 273 | 10.2031 | 0.0761 |
10.2266 | 0.0199 | 274 | 10.2031 | 0.0762 |
10.2188 | 0.0200 | 275 | 10.2031 | 0.0762 |
10.2109 | 0.0201 | 276 | 10.1953 | 0.0761 |
10.2109 | 0.0201 | 277 | 10.1953 | 0.0762 |
10.1953 | 0.0202 | 278 | 10.1953 | 0.0762 |
10.2031 | 0.0203 | 279 | 10.1953 | 0.0763 |
10.2188 | 0.0203 | 280 | 10.1953 | 0.0765 |
10.1953 | 0.0204 | 281 | 10.1875 | 0.0766 |
10.1953 | 0.0205 | 282 | 10.1875 | 0.0767 |
10.2031 | 0.0206 | 283 | 10.1875 | 0.0767 |
10.1797 | 0.0206 | 284 | 10.1875 | 0.0766 |
10.1953 | 0.0207 | 285 | 10.1875 | 0.0765 |
10.1953 | 0.0208 | 286 | 10.1797 | 0.0764 |
10.1875 | 0.0209 | 287 | 10.1797 | 0.0764 |
10.1953 | 0.0209 | 288 | 10.1797 | 0.0765 |
10.1875 | 0.0210 | 289 | 10.1797 | 0.0765 |
10.1875 | 0.0211 | 290 | 10.1797 | 0.0768 |
10.1797 | 0.0211 | 291 | 10.1719 | 0.0770 |
10.1719 | 0.0212 | 292 | 10.1719 | 0.0771 |
10.1719 | 0.0213 | 293 | 10.1719 | 0.0772 |
10.1797 | 0.0214 | 294 | 10.1719 | 0.0773 |
10.1797 | 0.0214 | 295 | 10.1719 | 0.0773 |
10.1641 | 0.0215 | 296 | 10.1641 | 0.0773 |
10.1719 | 0.0216 | 297 | 10.1641 | 0.0773 |
10.1719 | 0.0217 | 298 | 10.1641 | 0.0773 |
10.1719 | 0.0217 | 299 | 10.1641 | 0.0773 |
10.1719 | 0.0218 | 300 | 10.1641 | 0.0773 |
10.1641 | 0.0219 | 301 | 10.1641 | 0.0773 |
10.1562 | 0.0219 | 302 | 10.1562 | 0.0772 |
10.1719 | 0.0220 | 303 | 10.1562 | 0.0771 |
10.1562 | 0.0221 | 304 | 10.1562 | 0.0772 |
10.1641 | 0.0222 | 305 | 10.1562 | 0.0773 |
10.1562 | 0.0222 | 306 | 10.1484 | 0.0773 |
10.1641 | 0.0223 | 307 | 10.1484 | 0.0773 |
10.1719 | 0.0224 | 308 | 10.1484 | 0.0775 |
10.1562 | 0.0224 | 309 | 10.1484 | 0.0775 |
10.1719 | 0.0225 | 310 | 10.1484 | 0.0775 |
10.1562 | 0.0226 | 311 | 10.1406 | 0.0774 |
10.1562 | 0.0227 | 312 | 10.1406 | 0.0774 |
10.1562 | 0.0227 | 313 | 10.1406 | 0.0773 |
10.1406 | 0.0228 | 314 | 10.1406 | 0.0774 |
10.1406 | 0.0229 | 315 | 10.1406 | 0.0774 |
10.1406 | 0.0230 | 316 | 10.1406 | 0.0774 |
10.1328 | 0.0230 | 317 | 10.1328 | 0.0775 |
10.1484 | 0.0231 | 318 | 10.1328 | 0.0775 |
10.1328 | 0.0232 | 319 | 10.1328 | 0.0775 |
10.1328 | 0.0232 | 320 | 10.1328 | 0.0775 |
10.125 | 0.0233 | 321 | 10.1328 | 0.0775 |
10.1406 | 0.0234 | 322 | 10.125 | 0.0776 |
10.1328 | 0.0235 | 323 | 10.125 | 0.0777 |
10.125 | 0.0235 | 324 | 10.125 | 0.0778 |
10.125 | 0.0236 | 325 | 10.125 | 0.0777 |
10.125 | 0.0237 | 326 | 10.125 | 0.0777 |
10.1328 | 0.0238 | 327 | 10.1172 | 0.0777 |
10.1172 | 0.0238 | 328 | 10.1172 | 0.0777 |
10.1172 | 0.0239 | 329 | 10.1172 | 0.0777 |
10.125 | 0.0240 | 330 | 10.1172 | 0.0778 |
10.1094 | 0.0240 | 331 | 10.1172 | 0.0778 |
10.1094 | 0.0241 | 332 | 10.1094 | 0.0777 |
10.1094 | 0.0242 | 333 | 10.1094 | 0.0776 |
10.1172 | 0.0243 | 334 | 10.1094 | 0.0775 |
10.125 | 0.0243 | 335 | 10.1094 | 0.0774 |
10.1172 | 0.0244 | 336 | 10.1094 | 0.0772 |
10.1016 | 0.0245 | 337 | 10.1016 | 0.0771 |
10.1094 | 0.0246 | 338 | 10.1016 | 0.0773 |
10.1172 | 0.0246 | 339 | 10.1016 | 0.0775 |
10.1094 | 0.0247 | 340 | 10.1016 | 0.0777 |
10.1172 | 0.0248 | 341 | 10.1016 | 0.0778 |
10.0938 | 0.0248 | 342 | 10.0938 | 0.0779 |
10.1016 | 0.0249 | 343 | 10.0938 | 0.0780 |
10.0938 | 0.0250 | 344 | 10.0938 | 0.0780 |
10.0938 | 0.0251 | 345 | 10.0938 | 0.0780 |
10.1016 | 0.0251 | 346 | 10.0938 | 0.0781 |
10.1094 | 0.0252 | 347 | 10.0859 | 0.0780 |
10.0938 | 0.0253 | 348 | 10.0859 | 0.0780 |
10.0938 | 0.0254 | 349 | 10.0859 | 0.0780 |
10.0859 | 0.0254 | 350 | 10.0859 | 0.0779 |
10.0859 | 0.0255 | 351 | 10.0859 | 0.0780 |
10.0938 | 0.0256 | 352 | 10.0781 | 0.0781 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.0a0+32f93b1
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 65
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for gokulsrinivasagan/gpt_train_12_128
Base model
openai-community/gpt2Dataset used to train gokulsrinivasagan/gpt_train_12_128
Evaluation results
- Accuracy on gokuls/wiki_book_corpus_raw_dataset_tinyself-reported0.078