YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
This model corresponds to tapas_masklm_large_reset of the original repository.
Here's how you can use it:
from transformers import TapasTokenizer, TapasForMaskedLM
import pandas as pd
import torch
tokenizer = TapasTokenizer.from_pretrained("google/tapas-large-masklm")
model = TapasForMaskedLM.from_pretrained("google/tapas-large-masklm")
data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
'Age': ["56", "45", "59"],
'Number of movies': ["87", "53", "69"]
}
table = pd.DataFrame.from_dict(data)
query = "How many movies has Leonardo [MASK] Caprio played in?"
# prepare inputs
inputs = tokenizer(table=table, queries=query, padding="max_length", return_tensors="pt")
# forward pass
outputs = model(**inputs)
# return top 5 values and predictions
masked_index = torch.nonzero(inputs.input_ids.squeeze() == tokenizer.mask_token_id, as_tuple=False)
logits = outputs.logits[0, masked_index.item(), :]
probs = logits.softmax(dim=0)
values, predictions = probs.topk(5)
for value, pred in zip(values, predictions):
print(f"{tokenizer.decode([pred])} with confidence {value}")
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.