Files changed (3) hide show
  1. README.md +210 -77
  2. adapter_config.json +26 -0
  3. adapter_model.safetensors +3 -0
README.md CHANGED
@@ -1,85 +1,218 @@
1
  ---
2
- license: apache-2.0
3
- language:
4
- - en
5
- tags:
6
- - api
7
- datasets:
8
- - gorilla-llm/APIBench
9
  ---
10
- # Gorilla: Large Language Model Connected with Massive APIs
11
- By Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez ([Project Website](https://shishirpatil.github.io/gorilla/))
12
 
13
- [![arXiv](https://img.shields.io/badge/arXiv-2305.15334-<COLOR>.svg?style=flat-square)](https://arxiv.org/abs/2305.15334) [![Discord](https://img.shields.io/discord/1111172801899012102?label=Discord&logo=discord&logoColor=green&style=flat-square)](https://discord.gg/3apqwwME) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1DEBPsccVLF_aUnmD0FwPeHFrtdC0QIUP?usp=sharing)
 
 
 
14
 
15
- `Gorilla` enables LLMs to use tools by invoking APIs. Given a natural language query, Gorilla can write a semantically- and syntactically- correct API to invoke. With Gorilla, we are the first to demonstrate how to use LLMs to invoke 1,600+ (and growing) API calls accurately while reducing hallucination. We also release APIBench, the largest collection of APIs, curated and easy to be trained on! Join us, as we try to expand the largest API store and teach LLMs how to write them! Hop on our Discord, or open a PR, or email us if you would like to have your API incorporated as well.
16
 
17
  ## Model Details
18
 
19
- Gorilla can be either trained via standard finetuning or using our novel retriever-aware training pipeline. We release `gorilla-7b-hf-delta-v1`, a 0-shot finetuned LLM that can reliably use Hugging Face APIs. It can be prompted through simply natural language (e.g., "I want to generate an image from text."). Checkour our website, github and paper for more information.
20
- Thank you for the feedback, with `gorilla-llm/gorilla-7b-hf-delta-v1` Gorilla now ouput's code snippet that can be directly integrated into your workflow!
21
-
22
- Now with `gorilla-llm/gorilla-7b-hf-delta-v1`
23
-
24
- Example prompt1: "I would like to translate 'I feel very good today.' from English to Chinese."
25
-
26
- 🦍 Response:
27
-
28
- ```
29
- from transformers import pipeline
30
- def load_model():
31
- translation_model = pipeline(‘translation_en_to_zh’, model=‘Helsinki-NLP/opus-mt-en-zh’)
32
- return translation_model
33
- def process_data(text_to_translate, translation_model):
34
- response = translation_model(text_to_translate)[0][‘translation_text’]
35
- return response
36
- text_to_translate = ‘I feel very good today’
37
- # Load the model
38
- translation_model = load_model()
39
- # Process the data
40
- translated_text = process_data(text_to_translate, translation_model)
41
- print(translated_text)
42
- ```
43
-
44
- Example prompt2: "I want to build a robot that can detecting objects in an image ‘cat.jpeg’. Input: [‘cat.jpeg’]"
45
-
46
- 🦍 Response:
47
-
48
- ```
49
- from transformers import ConvNextFeatureExtractor, ConvNextForImageClassification
50
- from PIL import Image
51
- def load_model():
52
- feature_extractor = ConvNextFeatureExtractor.from_pretrained(‘facebook/convnext-large-224’)
53
- model = ConvNextForImageClassification.from_pretrained(‘facebook/convnext-large-224’)
54
- return feature_extractor, model
55
- def process_data(image_path, feature_extractor, model):
56
- image = Image.open(image_path)
57
- inputs = feature_extractor(images=image, return_tensors=‘pt’)
58
- logits = model(**inputs).logits
59
- predicted_label = logits.argmax(-1).item()
60
- response = model.config.id2label[predicted_label]
61
- return response
62
- image_path = ‘/content/cat.jpeg’
63
- # Load the model and feature extractor
64
- feature_extractor, model = load_model()
65
- # Process the data
66
- response = process_data(image_path, feature_extractor, model)
67
- print(response)
68
- ```
69
-
70
- ### Model Type
71
-
72
- Gorilla is an open-source API caller trained by fine-tuning LLaMA weights. It is an auto-regressive language model, based on the transformer architecture.
73
- Gorilla also has Apache 2.0 models trained on MPT-7B and Falcon-7B base, which cab be used commercially with no obligations.
74
-
75
- ### Model Date
76
-
77
- 06/15/2023
78
-
79
- ### Organization
80
-
81
- Gorilla LLM (UC Berkeley)
82
 
83
- ---
84
- license: apache-2.0
85
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: gorilla-llm/gorilla-7b-hf-delta-v1
 
 
 
 
 
4
  ---
 
 
5
 
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
 
 
11
 
12
  ## Model Details
13
 
14
+ ### Model Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: True
207
+ - load_in_4bit: False
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: fp4
213
+ - bnb_4bit_use_double_quant: False
214
+ - bnb_4bit_compute_dtype: float32
215
+
216
+ ### Framework versions
217
+
218
+ - PEFT 0.6.3.dev0
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "gorilla-llm/gorilla-7b-hf-delta-v1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "q_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:add17081b919b9d2839762abb678c8aa8c12b3d7ea9de5c633e383baad5df69c
3
+ size 33571624