|
--- |
|
license: apache-2.0 |
|
pipeline_tag: text-classification |
|
tags: |
|
- transformers |
|
- sentence-transformers |
|
- text-embeddings-inference |
|
language: |
|
- multilingual |
|
--- |
|
|
|
# bge-reranker-v2-m3-GGUF |
|
|
|
**Model creator**: [BAAI](https://huggingface.co/BAAI)<br/> |
|
**Original model**: [bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3)<br/> |
|
**GGUF quantization**: based on llama.cpp release [f4d2b](https://github.com/ggerganov/llama.cpp/commit/f4d2b8846a6b34419ff9e9491aee6cd95e444bfc) |
|
|
|
--- |
|
|
|
# Reranker |
|
|
|
**More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/tree/master).** |
|
|
|
- [Model List](#model-list) |
|
- [Usage](#usage) |
|
- [Fine-tuning](#fine-tune) |
|
- [Evaluation](#evaluation) |
|
- [Citation](#citation) |
|
|
|
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. |
|
You can get a relevance score by inputting query and passage to the reranker. |
|
And the score can be mapped to a float value in [0,1] by sigmoid function. |
|
|
|
|
|
## Model List |
|
|
|
| Model | Base model | Language | layerwise | feature | |
|
|:--------------------------------------------------------------------------|:--------:|:-----------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:| |
|
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. | |
|
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | [xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. | |
|
| [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | [bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | - | Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference. | |
|
| [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | [gemma-2b](https://huggingface.co/google/gemma-2b) | Multilingual | - | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. | |
|
| [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) | [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) | Multilingual | 8-40 | Suitable for multilingual contexts, performs well in both English and Chinese proficiency, allows freedom to select layers for output, facilitating accelerated inference. | |
|
|
|
|
|
You can select the model according your senario and resource. |
|
- For **multilingual**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) |
|
|
|
- For **Chinese or English**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise). |
|
|
|
- For **efficiency**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and the low layer of [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise). |
|
|
|
- For better performance, recommand [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) |
|
|
|
## Usage |
|
### Using FlagEmbedding |
|
|
|
``` |
|
pip install -U FlagEmbedding |
|
``` |
|
|
|
#### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 ) |
|
|
|
Get relevance scores (higher scores indicate more relevance): |
|
|
|
```python |
|
from FlagEmbedding import FlagReranker |
|
reranker = FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation |
|
|
|
score = reranker.compute_score(['query', 'passage']) |
|
print(score) # -5.65234375 |
|
|
|
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score |
|
score = reranker.compute_score(['query', 'passage'], normalize=True) |
|
print(score) # 0.003497010252573502 |
|
|
|
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) |
|
print(scores) # [-8.1875, 5.26171875] |
|
|
|
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score |
|
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True) |
|
print(scores) # [0.00027803096387751553, 0.9948403768236574] |
|
``` |
|
|
|
#### For LLM-based reranker |
|
|
|
```python |
|
from FlagEmbedding import FlagLLMReranker |
|
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation |
|
# reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation |
|
|
|
score = reranker.compute_score(['query', 'passage']) |
|
print(score) |
|
|
|
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) |
|
print(scores) |
|
``` |
|
|
|
#### For LLM-based layerwise reranker |
|
|
|
```python |
|
from FlagEmbedding import LayerWiseFlagLLMReranker |
|
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation |
|
# reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation |
|
|
|
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score. |
|
print(score) |
|
|
|
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], cutoff_layers=[28]) |
|
print(scores) |
|
``` |
|
|
|
### Using Huggingface transformers |
|
|
|
#### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 ) |
|
|
|
Get relevance scores (higher scores indicate more relevance): |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-m3') |
|
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-v2-m3') |
|
model.eval() |
|
|
|
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] |
|
with torch.no_grad(): |
|
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) |
|
scores = model(**inputs, return_dict=True).logits.view(-1, ).float() |
|
print(scores) |
|
``` |
|
|
|
#### For LLM-based reranker |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024): |
|
if prompt is None: |
|
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'." |
|
sep = "\n" |
|
prompt_inputs = tokenizer(prompt, |
|
return_tensors=None, |
|
add_special_tokens=False)['input_ids'] |
|
sep_inputs = tokenizer(sep, |
|
return_tensors=None, |
|
add_special_tokens=False)['input_ids'] |
|
inputs = [] |
|
for query, passage in pairs: |
|
query_inputs = tokenizer(f'A: {query}', |
|
return_tensors=None, |
|
add_special_tokens=False, |
|
max_length=max_length * 3 // 4, |
|
truncation=True) |
|
passage_inputs = tokenizer(f'B: {passage}', |
|
return_tensors=None, |
|
add_special_tokens=False, |
|
max_length=max_length, |
|
truncation=True) |
|
item = tokenizer.prepare_for_model( |
|
[tokenizer.bos_token_id] + query_inputs['input_ids'], |
|
sep_inputs + passage_inputs['input_ids'], |
|
truncation='only_second', |
|
max_length=max_length, |
|
padding=False, |
|
return_attention_mask=False, |
|
return_token_type_ids=False, |
|
add_special_tokens=False |
|
) |
|
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs |
|
item['attention_mask'] = [1] * len(item['input_ids']) |
|
inputs.append(item) |
|
return tokenizer.pad( |
|
inputs, |
|
padding=True, |
|
max_length=max_length + len(sep_inputs) + len(prompt_inputs), |
|
pad_to_multiple_of=8, |
|
return_tensors='pt', |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-gemma') |
|
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-gemma') |
|
yes_loc = tokenizer('Yes', add_special_tokens=False)['input_ids'][0] |
|
model.eval() |
|
|
|
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] |
|
with torch.no_grad(): |
|
inputs = get_inputs(pairs, tokenizer) |
|
scores = model(**inputs, return_dict=True).logits[:, -1, yes_loc].view(-1, ).float() |
|
print(scores) |
|
``` |
|
|
|
#### For LLM-based layerwise reranker |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024): |
|
if prompt is None: |
|
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'." |
|
sep = "\n" |
|
prompt_inputs = tokenizer(prompt, |
|
return_tensors=None, |
|
add_special_tokens=False)['input_ids'] |
|
sep_inputs = tokenizer(sep, |
|
return_tensors=None, |
|
add_special_tokens=False)['input_ids'] |
|
inputs = [] |
|
for query, passage in pairs: |
|
query_inputs = tokenizer(f'A: {query}', |
|
return_tensors=None, |
|
add_special_tokens=False, |
|
max_length=max_length * 3 // 4, |
|
truncation=True) |
|
passage_inputs = tokenizer(f'B: {passage}', |
|
return_tensors=None, |
|
add_special_tokens=False, |
|
max_length=max_length, |
|
truncation=True) |
|
item = tokenizer.prepare_for_model( |
|
[tokenizer.bos_token_id] + query_inputs['input_ids'], |
|
sep_inputs + passage_inputs['input_ids'], |
|
truncation='only_second', |
|
max_length=max_length, |
|
padding=False, |
|
return_attention_mask=False, |
|
return_token_type_ids=False, |
|
add_special_tokens=False |
|
) |
|
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs |
|
item['attention_mask'] = [1] * len(item['input_ids']) |
|
inputs.append(item) |
|
return tokenizer.pad( |
|
inputs, |
|
padding=True, |
|
max_length=max_length + len(sep_inputs) + len(prompt_inputs), |
|
pad_to_multiple_of=8, |
|
return_tensors='pt', |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16) |
|
model = model.to('cuda') |
|
model.eval() |
|
|
|
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] |
|
with torch.no_grad(): |
|
inputs = get_inputs(pairs, tokenizer).to(model.device) |
|
all_scores = model(**inputs, return_dict=True, cutoff_layers=[28]) |
|
all_scores = [scores[:, -1].view(-1, ).float() for scores in all_scores[0]] |
|
print(all_scores) |
|
``` |
|
|
|
## Fine-tune |
|
|
|
### Data Format |
|
|
|
Train data should be a json file, where each line is a dict like this: |
|
|
|
``` |
|
{"query": str, "pos": List[str], "neg":List[str], "prompt": str} |
|
``` |
|
|
|
`query` is the query, and `pos` is a list of positive texts, `neg` is a list of negative texts, `prompt` indicates the relationship between query and texts. If you have no negative texts for a query, you can random sample some from the entire corpus as the negatives. |
|
|
|
See [toy_finetune_data.jsonl](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker/toy_finetune_data.jsonl) for a toy data file. |
|
|
|
### Train |
|
|
|
You can fine-tune the reranker with the following code: |
|
|
|
**For llm-based reranker** |
|
|
|
```shell |
|
torchrun --nproc_per_node {number of gpus} \ |
|
-m FlagEmbedding.llm_reranker.finetune_for_instruction.run \ |
|
--output_dir {path to save model} \ |
|
--model_name_or_path google/gemma-2b \ |
|
--train_data ./toy_finetune_data.jsonl \ |
|
--learning_rate 2e-4 \ |
|
--num_train_epochs 1 \ |
|
--per_device_train_batch_size 1 \ |
|
--gradient_accumulation_steps 16 \ |
|
--dataloader_drop_last True \ |
|
--query_max_len 512 \ |
|
--passage_max_len 512 \ |
|
--train_group_size 16 \ |
|
--logging_steps 1 \ |
|
--save_steps 2000 \ |
|
--save_total_limit 50 \ |
|
--ddp_find_unused_parameters False \ |
|
--gradient_checkpointing \ |
|
--deepspeed stage1.json \ |
|
--warmup_ratio 0.1 \ |
|
--bf16 \ |
|
--use_lora True \ |
|
--lora_rank 32 \ |
|
--lora_alpha 64 \ |
|
--use_flash_attn True \ |
|
--target_modules q_proj k_proj v_proj o_proj |
|
``` |
|
|
|
**For llm-based layerwise reranker** |
|
|
|
```shell |
|
torchrun --nproc_per_node {number of gpus} \ |
|
-m FlagEmbedding.llm_reranker.finetune_for_layerwise.run \ |
|
--output_dir {path to save model} \ |
|
--model_name_or_path openbmb/MiniCPM-2B-dpo-bf16 \ |
|
--train_data ./toy_finetune_data.jsonl \ |
|
--learning_rate 2e-4 \ |
|
--num_train_epochs 1 \ |
|
--per_device_train_batch_size 1 \ |
|
--gradient_accumulation_steps 16 \ |
|
--dataloader_drop_last True \ |
|
--query_max_len 512 \ |
|
--passage_max_len 512 \ |
|
--train_group_size 16 \ |
|
--logging_steps 1 \ |
|
--save_steps 2000 \ |
|
--save_total_limit 50 \ |
|
--ddp_find_unused_parameters False \ |
|
--gradient_checkpointing \ |
|
--deepspeed stage1.json \ |
|
--warmup_ratio 0.1 \ |
|
--bf16 \ |
|
--use_lora True \ |
|
--lora_rank 32 \ |
|
--lora_alpha 64 \ |
|
--use_flash_attn True \ |
|
--target_modules q_proj k_proj v_proj o_proj \ |
|
--start_layer 8 \ |
|
--head_multi True \ |
|
--head_type simple \ |
|
--lora_extra_parameters linear_head |
|
``` |
|
|
|
Our rerankers are initialized from [google/gemma-2b](https://huggingface.co/google/gemma-2b) (for llm-based reranker) and [openbmb/MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) (for llm-based layerwise reranker), and we train it on a mixture of multilingual datasets: |
|
|
|
- [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data) |
|
- [quora train data](https://huggingface.co/datasets/quora) |
|
- [fever train data](https://fever.ai/dataset/fever.html) |
|
|
|
## Evaluation |
|
|
|
- llama-index. |
|
|
|
![image-20240317193909373](./assets/llama-index.png) |
|
|
|
|
|
- BEIR. |
|
|
|
rereank the top 100 results from bge-en-v1.5 large. |
|
|
|
![image-20240317174633333](./assets/BEIR-bge-en-v1.5.png) |
|
|
|
rereank the top 100 results from e5 mistral 7b instruct. |
|
|
|
![image-20240317172949713](./assets/BEIR-e5-mistral.png) |
|
|
|
- CMTEB-retrieval. |
|
It rereank the top 100 results from bge-zh-v1.5 large. |
|
|
|
![image-20240317173026235](./assets/CMTEB-retrieval-bge-zh-v1.5.png) |
|
|
|
- miracl (multi-language). |
|
It rereank the top 100 results from bge-m3. |
|
|
|
![image-20240317173117639](./assets/miracl-bge-m3.png) |
|
|
|
|
|
|
|
## Citation |
|
|
|
If you find this repository useful, please consider giving a star and citation |
|
|
|
```bibtex |
|
@misc{li2023making, |
|
title={Making Large Language Models A Better Foundation For Dense Retrieval}, |
|
author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao}, |
|
year={2023}, |
|
eprint={2312.15503}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
@misc{chen2024bge, |
|
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation}, |
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu}, |
|
year={2024}, |
|
eprint={2402.03216}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |