Quantization config
"zero_point": true,
"q_group_size": 128,
"w_bit": 4,
"version": "GEMM"
Generate
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
from transformers import GenerationConfig
model_path = "gradjitta/Poro-34B-AWQ"
model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=True, trust_remote_code=False, safetensors=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=False)
def generate(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].cuda()
generation_output = model.generate(
input_ids=input_ids,
generation_config=GenerationConfig(pad_token_id=tokenizer.pad_token_id, temperature=1.0, top_p=0.99, top_k=50, num_beams=1, do_sample=True),
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=256
)
for seq in generation_output.sequences:
output = tokenizer.decode(seq)
print(output)
generate("Suomalainen runo elämästä:")
output
Suomalainen runo elämästä:
- se alkaa
- sitten ei enää mikään riitä
- se päättyy ja se alkaa</s>
Work supported by https://datacrunch.io/
Quantized by: gradjitta
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.