gsl22's picture
End of training
c429bf0 verified
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: ellis-v3-emotion-leadership-multi-label
    results: []

ellis-v3-emotion-leadership-multi-label

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1095
  • Accuracy: 0.9728
  • F1: 0.9318
  • Precision: 0.9346
  • Recall: 0.9289

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.1396 1.0 5910 0.1235 0.9669 0.9169 0.9211 0.9127
0.1025 2.0 11820 0.1095 0.9728 0.9318 0.9346 0.9289

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1