Update model card
#2
by
dn6
HF staff
- opened
README.md
CHANGED
@@ -13,18 +13,19 @@ These motion modules are applied after the ResNet and Attention blocks in the St
|
|
13 |
<td><center>
|
14 |
masterpiece, bestquality, sunset.
|
15 |
<br>
|
16 |
-
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-
|
17 |
alt="masterpiece, bestquality, sunset"
|
18 |
style="width: 300px;" />
|
19 |
</center></td>
|
20 |
</tr>
|
21 |
</table>
|
22 |
|
|
|
23 |
The following example demonstrates how you can utilize the motion modules with an existing Stable Diffusion text to image model.
|
24 |
|
25 |
```python
|
26 |
import torch
|
27 |
-
from diffusers import MotionAdapter, AnimateDiffPipeline,
|
28 |
from diffusers.utils import export_to_gif
|
29 |
|
30 |
# Load the motion adapter
|
@@ -32,13 +33,10 @@ adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-
|
|
32 |
# load SD 1.5 based finetuned model
|
33 |
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
|
34 |
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter)
|
35 |
-
scheduler =
|
36 |
model_id,
|
37 |
subfolder="scheduler",
|
38 |
-
clip_sample=False,
|
39 |
beta_schedule="linear",
|
40 |
-
timestep_spacing="linspace",
|
41 |
-
steps_offset=1
|
42 |
)
|
43 |
pipe.scheduler = scheduler
|
44 |
|
@@ -62,9 +60,3 @@ output = pipe(
|
|
62 |
frames = output.frames[0]
|
63 |
export_to_gif(frames, "animation.gif")
|
64 |
```
|
65 |
-
|
66 |
-
<Tip>
|
67 |
-
|
68 |
-
AnimateDiff tends to work better with finetuned Stable Diffusion models. If you plan on using a scheduler that can clip samples, make sure to disable it by setting `clip_sample=False` in the scheduler as this can also have an adverse effect on generated samples.
|
69 |
-
|
70 |
-
</Tip>
|
|
|
13 |
<td><center>
|
14 |
masterpiece, bestquality, sunset.
|
15 |
<br>
|
16 |
+
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-v3-euler-a.gif"
|
17 |
alt="masterpiece, bestquality, sunset"
|
18 |
style="width: 300px;" />
|
19 |
</center></td>
|
20 |
</tr>
|
21 |
</table>
|
22 |
|
23 |
+
|
24 |
The following example demonstrates how you can utilize the motion modules with an existing Stable Diffusion text to image model.
|
25 |
|
26 |
```python
|
27 |
import torch
|
28 |
+
from diffusers import MotionAdapter, AnimateDiffPipeline, EulerAncestralDiscreteScheduler
|
29 |
from diffusers.utils import export_to_gif
|
30 |
|
31 |
# Load the motion adapter
|
|
|
33 |
# load SD 1.5 based finetuned model
|
34 |
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
|
35 |
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter)
|
36 |
+
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
|
37 |
model_id,
|
38 |
subfolder="scheduler",
|
|
|
39 |
beta_schedule="linear",
|
|
|
|
|
40 |
)
|
41 |
pipe.scheduler = scheduler
|
42 |
|
|
|
60 |
frames = output.frames[0]
|
61 |
export_to_gif(frames, "animation.gif")
|
62 |
```
|
|
|
|
|
|
|
|
|
|
|
|