metadata
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_keras_callback
model-index:
- name: gustavokpc/bert-base-portuguese-cased_LRATE_5e-06_EPOCHS_6
results: []
gustavokpc/bert-base-portuguese-cased_LRATE_5e-06_EPOCHS_6
This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0811
- Train Accuracy: 0.9728
- Train F1 M: 0.5572
- Train Precision M: 0.4036
- Train Recall M: 0.9646
- Validation Loss: 0.1804
- Validation Accuracy: 0.9387
- Validation F1 M: 0.5549
- Validation Precision M: 0.3999
- Validation Recall M: 0.9504
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-06, 'decay_steps': 4548, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Train F1 M | Train Precision M | Train Recall M | Validation Loss | Validation Accuracy | Validation F1 M | Validation Precision M | Validation Recall M | Epoch |
---|---|---|---|---|---|---|---|---|---|---|
0.2887 | 0.8821 | 0.4544 | 0.3418 | 0.7393 | 0.1871 | 0.9321 | 0.5574 | 0.4039 | 0.9455 | 0 |
0.1571 | 0.9439 | 0.5463 | 0.3992 | 0.9299 | 0.1740 | 0.9321 | 0.5596 | 0.4040 | 0.9542 | 1 |
0.1185 | 0.9587 | 0.5529 | 0.4020 | 0.9480 | 0.1714 | 0.9367 | 0.5588 | 0.4030 | 0.9555 | 2 |
0.0950 | 0.9662 | 0.5572 | 0.4033 | 0.9621 | 0.1775 | 0.9373 | 0.5604 | 0.4033 | 0.9607 | 3 |
0.0811 | 0.9728 | 0.5572 | 0.4036 | 0.9646 | 0.1804 | 0.9387 | 0.5549 | 0.3999 | 0.9504 | 4 |
Framework versions
- Transformers 4.34.1
- TensorFlow 2.10.0
- Datasets 2.14.5
- Tokenizers 0.14.1