metadata
license: cc-by-nc-4.0
base_model: utter-project/mHuBERT-147
tags:
- generated_from_trainer
datasets:
- common_voice_15_0
metrics:
- wer
model-index:
- name: mHuBERT-147-br
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_15_0
type: common_voice_15_0
config: br
split: None
args: br
metrics:
- name: Wer
type: wer
value: 54.40414507772021
mHuBERT-147-br
This model is a fine-tuned version of utter-project/mHuBERT-147 on the common_voice_15_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7748
- Wer: 54.4041
- Cer: 18.4091
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
6.9168 | 2.18 | 1000 | 3.4435 | 100.0 | 99.8848 |
2.5187 | 4.36 | 2000 | 1.5458 | 84.7983 | 31.7071 |
1.2569 | 6.54 | 3000 | 1.0204 | 75.0740 | 26.1506 |
0.9322 | 8.71 | 4000 | 0.8765 | 69.9852 | 24.0654 |
0.785 | 10.89 | 5000 | 0.8191 | 66.0252 | 22.4968 |
0.6997 | 13.07 | 6000 | 0.8166 | 64.1007 | 21.8478 |
0.6318 | 15.25 | 7000 | 0.7961 | 61.4730 | 20.9685 |
0.5827 | 17.43 | 8000 | 0.7853 | 59.9926 | 20.2523 |
0.5573 | 19.61 | 9000 | 0.7536 | 59.6873 | 20.0737 |
0.5173 | 21.79 | 10000 | 0.7525 | 58.3364 | 19.6014 |
0.4874 | 23.97 | 11000 | 0.7694 | 57.4759 | 19.4766 |
0.4643 | 26.14 | 12000 | 0.7800 | 56.1158 | 19.0984 |
0.4511 | 28.32 | 13000 | 0.7640 | 55.6255 | 18.7892 |
0.4268 | 30.5 | 14000 | 0.7495 | 55.4404 | 18.6548 |
0.423 | 32.68 | 15000 | 0.7641 | 55.0703 | 18.5281 |
0.4166 | 34.86 | 16000 | 0.7730 | 54.8020 | 18.5377 |
0.3968 | 37.04 | 17000 | 0.7658 | 54.4597 | 18.3995 |
0.3958 | 39.22 | 18000 | 0.7748 | 54.4041 | 18.4091 |
Framework versions
- Transformers 4.39.1
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2