mHuBERT-147-br / README.md
gweltou's picture
Model save
15de6e8 verified
|
raw
history blame
3.1 kB
metadata
license: cc-by-nc-4.0
base_model: utter-project/mHuBERT-147
tags:
  - generated_from_trainer
datasets:
  - common_voice_15_0
metrics:
  - wer
model-index:
  - name: mHuBERT-147-br
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_15_0
          type: common_voice_15_0
          config: br
          split: None
          args: br
        metrics:
          - name: Wer
            type: wer
            value: 54.40414507772021

mHuBERT-147-br

This model is a fine-tuned version of utter-project/mHuBERT-147 on the common_voice_15_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7748
  • Wer: 54.4041
  • Cer: 18.4091

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
6.9168 2.18 1000 3.4435 100.0 99.8848
2.5187 4.36 2000 1.5458 84.7983 31.7071
1.2569 6.54 3000 1.0204 75.0740 26.1506
0.9322 8.71 4000 0.8765 69.9852 24.0654
0.785 10.89 5000 0.8191 66.0252 22.4968
0.6997 13.07 6000 0.8166 64.1007 21.8478
0.6318 15.25 7000 0.7961 61.4730 20.9685
0.5827 17.43 8000 0.7853 59.9926 20.2523
0.5573 19.61 9000 0.7536 59.6873 20.0737
0.5173 21.79 10000 0.7525 58.3364 19.6014
0.4874 23.97 11000 0.7694 57.4759 19.4766
0.4643 26.14 12000 0.7800 56.1158 19.0984
0.4511 28.32 13000 0.7640 55.6255 18.7892
0.4268 30.5 14000 0.7495 55.4404 18.6548
0.423 32.68 15000 0.7641 55.0703 18.5281
0.4166 34.86 16000 0.7730 54.8020 18.5377
0.3968 37.04 17000 0.7658 54.4597 18.3995
0.3958 39.22 18000 0.7748 54.4041 18.4091

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2