w2v-bert-2.0-br / README.md
gweltou's picture
End of training
c4f58c4 verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-br
    results: []

w2v-bert-2.0-br

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6660
  • Wer: 42.4942
  • Cer: 13.6525

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.08
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8001
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.0369 0.58 500 1.2289 85.3288 32.8021
0.7211 1.16 1000 0.9727 70.1973 24.6147
0.5669 1.75 1500 0.8496 64.6176 21.7978
0.4229 2.33 2000 0.7448 57.2663 19.3988
0.4352 2.91 2500 0.6749 52.9790 17.4075
0.3392 3.49 3000 0.6703 50.9678 16.8375
0.2508 4.07 3500 0.6143 49.6249 16.2547
0.2303 4.65 4000 0.7121 48.4648 15.8534
0.1776 5.24 4500 0.6667 47.0777 15.2910
0.1645 5.82 5000 0.6715 46.1825 14.8910
0.1304 6.4 5500 0.7212 44.2784 14.5139
0.1157 6.98 6000 0.6678 44.2721 14.3043
0.0924 7.56 6500 0.6935 43.1310 13.9171
0.0517 8.14 7000 0.6746 42.8851 13.7599
0.0667 8.73 7500 0.6327 42.9733 13.8136
0.0483 9.31 8000 0.6660 42.4942 13.6525

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2