document-spoof-clip / README.md
habibi26's picture
Model save
0f93130 verified
metadata
base_model: openai/clip-vit-base-patch32
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: document-spoof-clip
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9857142857142858

document-spoof-clip

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0225
  • Accuracy: 0.9857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8421 4 0.5305 0.8429
No log 1.8947 9 0.1707 0.9286
0.6268 2.9474 14 0.3507 0.8429
0.6268 4.0 19 0.4707 0.8
0.2881 4.8421 23 0.1337 0.9286
0.2881 5.8947 28 0.1293 0.9286
0.2349 6.9474 33 0.0565 0.9714
0.2349 8.0 38 0.0676 0.9571
0.0907 8.8421 42 0.3071 0.9
0.0907 9.8947 47 0.1462 0.9714
0.1203 10.9474 52 0.0761 0.9714
0.1203 12.0 57 0.0808 0.9571
0.0715 12.8421 61 0.0204 0.9857
0.0715 13.8947 66 0.0210 0.9857
0.031 14.9474 71 0.0274 0.9714
0.031 16.0 76 0.0448 0.9857
0.0655 16.8421 80 0.0225 0.9857

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1