ktp-kk-crop / README.md
habibi26's picture
Model save
6c91bea verified
metadata
base_model: openai/clip-vit-base-patch32
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: ktp-kk-crop
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

ktp-kk-crop

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0312
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8696 5 0.5871 0.7
No log 1.9130 11 0.0729 0.9667
0.7676 2.9565 17 0.1986 0.9
0.7676 4.0 23 0.1610 0.9
0.7676 4.8696 28 0.0644 0.9667
0.2441 5.9130 34 0.2016 0.9
0.2441 6.9565 40 0.1530 0.9
0.1751 8.0 46 0.0412 1.0
0.1751 8.8696 51 0.0301 1.0
0.1751 9.9130 57 0.0495 0.9667
0.1156 10.9565 63 0.0283 1.0
0.1156 12.0 69 0.0214 1.0
0.1156 12.8696 74 0.1014 0.9667
0.1238 13.9130 80 0.0538 1.0
0.1238 14.9565 86 0.0477 1.0
0.1064 16.0 92 0.0105 1.0
0.1064 16.8696 97 0.0389 0.9667
0.1064 17.9130 103 0.0120 1.0
0.0862 18.9565 109 0.0183 1.0
0.0862 20.0 115 0.0259 1.0
0.0345 20.8696 120 0.0272 1.0
0.0345 21.7391 125 0.0312 1.0

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1