|
--- |
|
library_name: peft |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
base_model: NousResearch/Llama-2-7b-hf |
|
model-index: |
|
- name: tokenfight |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.3.0` |
|
```yaml |
|
base_model: NousResearch/Llama-2-7b-hf |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
is_llama_derived_model: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: mhenrichsen/alpaca_2k_test |
|
type: alpaca |
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
output_dir: ./qlora-out |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
|
|
sequence_len: 4096 |
|
sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_modules: |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 4 |
|
optimizer: paged_adamw_32bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
|
|
hub_model_id: "hamel/tokenfight" |
|
``` |
|
|
|
</details><br> |
|
|
|
# tokenfight |
|
|
|
This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0035 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 3 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 24 |
|
- total_eval_batch_size: 6 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.1753 | 0.01 | 1 | 1.1604 | |
|
| 0.9235 | 0.25 | 20 | 0.9296 | |
|
| 1.1097 | 0.5 | 40 | 0.9156 | |
|
| 0.9275 | 0.76 | 60 | 0.9006 | |
|
| 1.0284 | 1.01 | 80 | 0.8942 | |
|
| 0.8905 | 1.26 | 100 | 0.8930 | |
|
| 0.8952 | 1.51 | 120 | 0.9071 | |
|
| 0.8816 | 1.77 | 140 | 0.9189 | |
|
| 0.7187 | 2.02 | 160 | 0.9026 | |
|
| 0.5115 | 2.27 | 180 | 0.9251 | |
|
| 0.6322 | 2.52 | 200 | 0.9525 | |
|
| 0.7149 | 2.78 | 220 | 0.9638 | |
|
| 0.5881 | 3.03 | 240 | 0.9699 | |
|
| 0.5596 | 3.28 | 260 | 0.9750 | |
|
| 0.4989 | 3.53 | 280 | 1.0047 | |
|
| 0.3654 | 3.79 | 300 | 1.0035 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0.dev0 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- quant_method: bitsandbytes |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
|
|
### Framework versions |
|
|
|
|
|
- PEFT 0.6.0 |
|
|