Edit model card

fine-tuned-visionllama

This model is a fine-tuned version of meta-llama/Llama-3.2-11B-Vision-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2764
  • Accuracy: 0.0262
  • F1: 0.0263

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6989 0.9778 22 0.6079 0.0001 0.0001
0.3177 1.9556 44 0.2764 0.0262 0.0263

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.1
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.3
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haoning6688/fine-tuned-visionllama

Adapter
(72)
this model