fine-tuned-visionllama
This model is a fine-tuned version of meta-llama/Llama-3.2-11B-Vision-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2764
- Accuracy: 0.0262
- F1: 0.0263
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.6989 | 0.9778 | 22 | 0.6079 | 0.0001 | 0.0001 |
0.3177 | 1.9556 | 44 | 0.2764 | 0.0262 | 0.0263 |
Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.4.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 7
Model tree for haoning6688/fine-tuned-visionllama
Base model
meta-llama/Llama-3.2-11B-Vision-Instruct