import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from threading import Thread | |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext | |
from llama_index.llms.huggingface import HuggingFaceLLM | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
document = SimpleDirectoryReader("sft/dataset").load_data() | |
from llama_index.core import PromptTemplate | |
system_prompt = "You are a QA bot. Given the questions answer it correctly." | |
query_wrapper_prompt = PromptTemplate("<|user|>:{query_str}\n<|assistant|>:") | |
llm = HuggingFaceLLM( | |
context_window=2048, | |
max_new_tokens=256, | |
generate_kwargs={"temperature":0.0, "do_sample":False}, | |
system_prompt=system_prompt, | |
query_wrapper_prompt=query_wrapper_prompt, | |
tokenizer_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
model_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
device_map="cuda", | |
model_kwargs={"torch_dtype":torch.bfloat16}, | |
) | |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") | |
service_context = ServiceContext.from_defaults( | |
chunk_size=256, | |
llm=llm, | |
embed_model=embed_model | |
) | |
index = VectorStoreIndex.from_documents(document, service_context = service_context) | |
query_engine = index.as_query_engine() | |
# Defining a custom stopping criteria class for the model's text generation. | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [2] # IDs of tokens where the generation should stop. | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token. | |
return True | |
return False | |
# Function to generate model predictions. | |
def predict(message, history): | |
history_transformer_format = history + [[message, ""]] | |
stop = StopOnTokens() | |
# Formatting the input for the model. | |
messages = "</s>".join(["</s>".join(["\n<|user|>:" + item[0], "\n<|assistant|>:" + item[1]]) | |
for item in history_transformer_format]) | |
model_inputs = tokenizer([messages], return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=0.95, | |
top_k=50, | |
temperature=0.5, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() # Starting the generation in a separate thread. | |
partial_message = "" | |
for new_token in streamer: | |
partial_message += new_token | |
if '</s>' in partial_message: # Breaking the loop if the stop token is generated. | |
break | |
yield partial_message | |
def predict(input, history): | |
response = query_engine.query(input) | |
return str(response) | |
gr.ChatInterface(predict).launch(share=True) | |
# # Loading the tokenizer and model from Hugging Face's model hub. | |
# tokenizer = AutoTokenizer.from_pretrained("output/1T_FT_lr1e-5_ep5_top1_2024-03-04/checkpoint-575") | |
# model = AutoModelForCausalLM.from_pretrained("output/1T_FT_lr1e-5_ep5_top1_2024-03-04/checkpoint-575") | |
# # using CUDA for an optimal experience | |
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# model = model.to(device) | |
# # Defining a custom stopping criteria class for the model's text generation. | |
# class StopOnTokens(StoppingCriteria): | |
# def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
# stop_ids = [2] # IDs of tokens where the generation should stop. | |
# for stop_id in stop_ids: | |
# if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token. | |
# return True | |
# return False | |
# # Function to generate model predictions. | |
# def predict(message, history): | |
# history_transformer_format = history + [[message, ""]] | |
# stop = StopOnTokens() | |
# # Formatting the input for the model. | |
# messages = "</s>".join(["</s>".join(["\n<|user|>:" + item[0], "\n<|assistant|>:" + item[1]]) | |
# for item in history_transformer_format]) | |
# model_inputs = tokenizer([messages], return_tensors="pt").to(device) | |
# streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
# generate_kwargs = dict( | |
# model_inputs, | |
# streamer=streamer, | |
# max_new_tokens=1024, | |
# do_sample=True, | |
# top_p=0.95, | |
# top_k=50, | |
# temperature=0.5, | |
# num_beams=1, | |
# stopping_criteria=StoppingCriteriaList([stop]) | |
# ) | |
# t = Thread(target=model.generate, kwargs=generate_kwargs) | |
# t.start() # Starting the generation in a separate thread. | |
# partial_message = "" | |
# for new_token in streamer: | |
# partial_message += new_token | |
# if '</s>' in partial_message: # Breaking the loop if the stop token is generated. | |
# break | |
# yield partial_message | |
# # Setting up the Gradio chat interface. | |
# gr.ChatInterface(predict, | |
# title="Tinyllama_chatBot", | |
# description="Ask Tiny llama any questions", | |
# examples=['How to cook a fish?', 'Who is the president of US now?'] | |
# ).launch(share=True) # Launching the web interface. |