|
--- |
|
license: mit |
|
base_model: haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: scenario-KD-PO-CDF-CL-D2_data-cl-cardiff_cl_only44 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scenario-KD-PO-CDF-CL-D2_data-cl-cardiff_cl_only44 |
|
|
|
This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 35.0455 |
|
- Accuracy: 0.4421 |
|
- F1: 0.4372 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 44 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 1.09 | 250 | 22.7040 | 0.4236 | 0.4110 | |
|
| 23.1676 | 2.17 | 500 | 21.6418 | 0.4336 | 0.4116 | |
|
| 23.1676 | 3.26 | 750 | 24.6174 | 0.4267 | 0.4155 | |
|
| 12.9705 | 4.35 | 1000 | 27.2959 | 0.4460 | 0.4447 | |
|
| 12.9705 | 5.43 | 1250 | 28.1257 | 0.4375 | 0.4315 | |
|
| 7.1171 | 6.52 | 1500 | 27.9161 | 0.4360 | 0.4279 | |
|
| 7.1171 | 7.61 | 1750 | 29.9352 | 0.4383 | 0.4361 | |
|
| 4.3718 | 8.7 | 2000 | 34.5593 | 0.4298 | 0.4191 | |
|
| 4.3718 | 9.78 | 2250 | 34.0346 | 0.4421 | 0.4373 | |
|
| 3.4048 | 10.87 | 2500 | 33.3230 | 0.4390 | 0.4351 | |
|
| 3.4048 | 11.96 | 2750 | 35.1604 | 0.4367 | 0.4313 | |
|
| 2.4739 | 13.04 | 3000 | 33.4441 | 0.4228 | 0.4170 | |
|
| 2.4739 | 14.13 | 3250 | 32.9534 | 0.4367 | 0.4308 | |
|
| 2.0055 | 15.22 | 3500 | 34.2647 | 0.4429 | 0.4414 | |
|
| 2.0055 | 16.3 | 3750 | 33.4915 | 0.4460 | 0.4450 | |
|
| 1.4812 | 17.39 | 4000 | 35.4776 | 0.4298 | 0.4249 | |
|
| 1.4812 | 18.48 | 4250 | 35.4540 | 0.4375 | 0.4366 | |
|
| 1.299 | 19.57 | 4500 | 34.2270 | 0.4468 | 0.4467 | |
|
| 1.299 | 20.65 | 4750 | 34.7234 | 0.4460 | 0.4441 | |
|
| 0.98 | 21.74 | 5000 | 34.8872 | 0.4352 | 0.4294 | |
|
| 0.98 | 22.83 | 5250 | 34.8777 | 0.4383 | 0.4370 | |
|
| 0.7847 | 23.91 | 5500 | 35.0968 | 0.4522 | 0.4518 | |
|
| 0.7847 | 25.0 | 5750 | 34.3877 | 0.4329 | 0.4285 | |
|
| 0.6835 | 26.09 | 6000 | 35.0458 | 0.4390 | 0.4365 | |
|
| 0.6835 | 27.17 | 6250 | 35.2727 | 0.4360 | 0.4326 | |
|
| 0.5378 | 28.26 | 6500 | 33.4029 | 0.4390 | 0.4353 | |
|
| 0.5378 | 29.35 | 6750 | 35.0455 | 0.4421 | 0.4372 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|