|
--- |
|
license: mit |
|
base_model: haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: scenario-KD-PO-CDF-CL-D2_data-cl-cardiff_cl_only66 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scenario-KD-PO-CDF-CL-D2_data-cl-cardiff_cl_only66 |
|
|
|
This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 31.9406 |
|
- Accuracy: 0.4514 |
|
- F1: 0.4492 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 66 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 1.09 | 250 | 20.8325 | 0.4190 | 0.4115 | |
|
| 23.5832 | 2.17 | 500 | 21.6265 | 0.4383 | 0.4264 | |
|
| 23.5832 | 3.26 | 750 | 24.4598 | 0.4390 | 0.4314 | |
|
| 13.3807 | 4.35 | 1000 | 25.7243 | 0.4306 | 0.4204 | |
|
| 13.3807 | 5.43 | 1250 | 27.8222 | 0.4421 | 0.4357 | |
|
| 7.1567 | 6.52 | 1500 | 30.2248 | 0.4290 | 0.4199 | |
|
| 7.1567 | 7.61 | 1750 | 32.3466 | 0.4352 | 0.4337 | |
|
| 4.6016 | 8.7 | 2000 | 31.6725 | 0.4460 | 0.4463 | |
|
| 4.6016 | 9.78 | 2250 | 33.4776 | 0.4506 | 0.4513 | |
|
| 3.1024 | 10.87 | 2500 | 31.5436 | 0.4606 | 0.4599 | |
|
| 3.1024 | 11.96 | 2750 | 35.7505 | 0.4452 | 0.4382 | |
|
| 2.4119 | 13.04 | 3000 | 34.6801 | 0.4244 | 0.4166 | |
|
| 2.4119 | 14.13 | 3250 | 33.5802 | 0.4568 | 0.4556 | |
|
| 1.9999 | 15.22 | 3500 | 33.1767 | 0.4498 | 0.4447 | |
|
| 1.9999 | 16.3 | 3750 | 35.5967 | 0.4174 | 0.3975 | |
|
| 1.4653 | 17.39 | 4000 | 33.7180 | 0.4537 | 0.4452 | |
|
| 1.4653 | 18.48 | 4250 | 32.4131 | 0.4468 | 0.4408 | |
|
| 1.2591 | 19.57 | 4500 | 33.4033 | 0.4352 | 0.4323 | |
|
| 1.2591 | 20.65 | 4750 | 34.4563 | 0.4290 | 0.4207 | |
|
| 1.0464 | 21.74 | 5000 | 33.1647 | 0.4514 | 0.4498 | |
|
| 1.0464 | 22.83 | 5250 | 32.5475 | 0.4414 | 0.4385 | |
|
| 0.7931 | 23.91 | 5500 | 33.5871 | 0.4498 | 0.4466 | |
|
| 0.7931 | 25.0 | 5750 | 33.1142 | 0.4452 | 0.4455 | |
|
| 0.7164 | 26.09 | 6000 | 33.0320 | 0.4321 | 0.4300 | |
|
| 0.7164 | 27.17 | 6250 | 34.2533 | 0.4306 | 0.4257 | |
|
| 0.6057 | 28.26 | 6500 | 32.7754 | 0.4483 | 0.4464 | |
|
| 0.6057 | 29.35 | 6750 | 31.9406 | 0.4514 | 0.4492 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|