Edit model card

scenario-KD-PO-MSV-EN-CL-D2_data-en-massive_all_1_166

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 11.8204
  • Accuracy: 0.4326
  • F1: 0.4237

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.28 100 12.2965 0.1486 0.0360
No log 0.56 200 11.1275 0.2774 0.1914
No log 0.83 300 9.7545 0.3648 0.2826
No log 1.11 400 10.2753 0.3682 0.2990
7.0012 1.39 500 9.6889 0.4057 0.3417
7.0012 1.67 600 10.7424 0.3645 0.3219
7.0012 1.94 700 9.8959 0.3842 0.3576
7.0012 2.22 800 10.1838 0.3977 0.3483
7.0012 2.5 900 9.9592 0.4001 0.3505
2.7375 2.78 1000 10.7031 0.3922 0.3589
2.7375 3.06 1100 10.7897 0.4041 0.3652
2.7375 3.33 1200 11.5339 0.3874 0.3567
2.7375 3.61 1300 11.7589 0.3932 0.3627
2.7375 3.89 1400 11.0529 0.4019 0.3780
1.7199 4.17 1500 10.9248 0.4050 0.3705
1.7199 4.44 1600 10.7844 0.4199 0.3904
1.7199 4.72 1700 12.4353 0.3804 0.3622
1.7199 5.0 1800 11.5307 0.4034 0.3608
1.7199 5.28 1900 13.0146 0.3763 0.3616
1.212 5.56 2000 11.9432 0.4010 0.3776
1.212 5.83 2100 11.7054 0.4123 0.3901
1.212 6.11 2200 12.1679 0.4034 0.3850
1.212 6.39 2300 12.1939 0.4017 0.3773
1.212 6.67 2400 12.1474 0.3949 0.3746
0.964 6.94 2500 14.2131 0.3647 0.3610
0.964 7.22 2600 12.9514 0.3853 0.3658
0.964 7.5 2700 13.2805 0.3796 0.3803
0.964 7.78 2800 13.4053 0.3774 0.3665
0.964 8.06 2900 12.0507 0.4094 0.3925
0.7594 8.33 3000 13.1875 0.3887 0.3803
0.7594 8.61 3100 11.5916 0.4226 0.3927
0.7594 8.89 3200 12.2110 0.4116 0.3937
0.7594 9.17 3300 11.7099 0.4220 0.3951
0.7594 9.44 3400 11.7371 0.4216 0.3980
0.6613 9.72 3500 11.4222 0.4280 0.3983
0.6613 10.0 3600 11.2944 0.4180 0.3822
0.6613 10.28 3700 11.7026 0.4208 0.4010
0.6613 10.56 3800 11.9702 0.4151 0.3976
0.6613 10.83 3900 12.2859 0.4077 0.3880
0.5936 11.11 4000 11.9756 0.4186 0.4037
0.5936 11.39 4100 11.6912 0.4249 0.4040
0.5936 11.67 4200 12.2043 0.4112 0.3992
0.5936 11.94 4300 12.7177 0.4039 0.3876
0.5936 12.22 4400 12.1222 0.4109 0.3961
0.5421 12.5 4500 11.8550 0.4206 0.4051
0.5421 12.78 4600 11.1417 0.4309 0.4040
0.5421 13.06 4700 12.3230 0.4044 0.3924
0.5421 13.33 4800 12.4166 0.4129 0.3943
0.5421 13.61 4900 12.9257 0.4036 0.3978
0.4976 13.89 5000 12.6773 0.4075 0.3968
0.4976 14.17 5100 12.6017 0.4085 0.4016
0.4976 14.44 5200 12.4200 0.4099 0.4000
0.4976 14.72 5300 12.0356 0.4200 0.4092
0.4976 15.0 5400 12.1298 0.4167 0.4095
0.4667 15.28 5500 11.5741 0.4278 0.4119
0.4667 15.56 5600 12.9944 0.4014 0.3989
0.4667 15.83 5700 11.7750 0.4280 0.4077
0.4667 16.11 5800 12.1071 0.4184 0.4099
0.4667 16.39 5900 11.9469 0.4237 0.4116
0.4461 16.67 6000 12.2299 0.4186 0.4107
0.4461 16.94 6100 12.0657 0.4255 0.4227
0.4461 17.22 6200 12.2029 0.4170 0.4106
0.4461 17.5 6300 12.0376 0.4221 0.4129
0.4461 17.78 6400 12.6844 0.4120 0.4075
0.4236 18.06 6500 12.5797 0.4098 0.3997
0.4236 18.33 6600 12.1018 0.4227 0.4031
0.4236 18.61 6700 12.9408 0.4040 0.4027
0.4236 18.89 6800 11.1018 0.4453 0.4273
0.4236 19.17 6900 12.1794 0.4204 0.4111
0.4093 19.44 7000 11.5382 0.4392 0.4240
0.4093 19.72 7100 11.9820 0.4252 0.4146
0.4093 20.0 7200 12.4871 0.4209 0.4123
0.4093 20.28 7300 12.0761 0.4247 0.4128
0.4093 20.56 7400 11.4837 0.4323 0.4223
0.392 20.83 7500 11.7228 0.4342 0.4222
0.392 21.11 7600 11.3621 0.4385 0.4246
0.392 21.39 7700 12.3272 0.4202 0.4135
0.392 21.67 7800 12.4137 0.4155 0.4057
0.392 21.94 7900 11.6855 0.4316 0.4180
0.3807 22.22 8000 12.1200 0.4246 0.4167
0.3807 22.5 8100 11.9334 0.4258 0.4165
0.3807 22.78 8200 11.8472 0.4297 0.4160
0.3807 23.06 8300 11.6667 0.4345 0.4178
0.3807 23.33 8400 11.9132 0.4274 0.4166
0.3743 23.61 8500 11.3469 0.4442 0.4287
0.3743 23.89 8600 11.6652 0.4331 0.4168
0.3743 24.17 8700 11.6161 0.4324 0.4180
0.3743 24.44 8800 12.0137 0.4285 0.4181
0.3743 24.72 8900 11.7983 0.4372 0.4251
0.3636 25.0 9000 11.3561 0.4424 0.4284
0.3636 25.28 9100 11.8990 0.4314 0.4176
0.3636 25.56 9200 11.9253 0.4298 0.4193
0.3636 25.83 9300 11.4007 0.4448 0.4257
0.3636 26.11 9400 11.4205 0.4419 0.4288
0.3547 26.39 9500 11.8100 0.4335 0.4227
0.3547 26.67 9600 11.8240 0.4320 0.4195
0.3547 26.94 9700 11.9142 0.4320 0.4245
0.3547 27.22 9800 11.6972 0.4372 0.4264
0.3547 27.5 9900 11.8331 0.4324 0.4225
0.3523 27.78 10000 11.8018 0.4351 0.4254
0.3523 28.06 10100 11.9065 0.4312 0.4233
0.3523 28.33 10200 11.6883 0.4376 0.4262
0.3523 28.61 10300 12.0389 0.4294 0.4216
0.3523 28.89 10400 11.8371 0.4308 0.4213
0.347 29.17 10500 11.8024 0.4337 0.4219
0.347 29.44 10600 11.8341 0.4331 0.4225
0.347 29.72 10700 11.8533 0.4324 0.4210
0.347 30.0 10800 11.8204 0.4326 0.4237

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PO-MSV-EN-CL-D2_data-en-massive_all_1_166

Finetuned
(22)
this model