scenario-KD-PO-MSV-EN-EN-D2_data-en-massive_all_1_155
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 16.6549
- Accuracy: 0.3446
- F1: 0.3337
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.28 | 100 | 14.6039 | 0.1460 | 0.0332 |
No log | 0.56 | 200 | 13.6711 | 0.2254 | 0.1373 |
No log | 0.83 | 300 | 13.3897 | 0.2697 | 0.1900 |
No log | 1.11 | 400 | 12.8696 | 0.2938 | 0.2276 |
8.6227 | 1.39 | 500 | 13.2466 | 0.3041 | 0.2445 |
8.6227 | 1.67 | 600 | 13.7732 | 0.2966 | 0.2455 |
8.6227 | 1.94 | 700 | 12.6296 | 0.3268 | 0.2769 |
8.6227 | 2.22 | 800 | 13.8225 | 0.3207 | 0.2728 |
8.6227 | 2.5 | 900 | 12.9157 | 0.3359 | 0.2878 |
3.2961 | 2.78 | 1000 | 13.5723 | 0.3246 | 0.2959 |
3.2961 | 3.06 | 1100 | 13.1047 | 0.3395 | 0.2893 |
3.2961 | 3.33 | 1200 | 14.0601 | 0.3199 | 0.2866 |
3.2961 | 3.61 | 1300 | 14.0842 | 0.3263 | 0.2965 |
3.2961 | 3.89 | 1400 | 14.2522 | 0.3144 | 0.2827 |
2.1563 | 4.17 | 1500 | 13.7890 | 0.3395 | 0.2904 |
2.1563 | 4.44 | 1600 | 14.3511 | 0.3280 | 0.2918 |
2.1563 | 4.72 | 1700 | 15.1711 | 0.3292 | 0.2792 |
2.1563 | 5.0 | 1800 | 15.7697 | 0.3151 | 0.2757 |
2.1563 | 5.28 | 1900 | 15.5149 | 0.3204 | 0.2941 |
1.5208 | 5.56 | 2000 | 15.3098 | 0.3181 | 0.2967 |
1.5208 | 5.83 | 2100 | 14.7872 | 0.3418 | 0.3052 |
1.5208 | 6.11 | 2200 | 15.5063 | 0.3214 | 0.2953 |
1.5208 | 6.39 | 2300 | 15.8674 | 0.3251 | 0.2960 |
1.5208 | 6.67 | 2400 | 16.2428 | 0.3215 | 0.2983 |
1.1778 | 6.94 | 2500 | 15.8196 | 0.3265 | 0.3121 |
1.1778 | 7.22 | 2600 | 16.2186 | 0.3169 | 0.2915 |
1.1778 | 7.5 | 2700 | 16.1006 | 0.3221 | 0.3010 |
1.1778 | 7.78 | 2800 | 15.8025 | 0.3398 | 0.3043 |
1.1778 | 8.06 | 2900 | 15.8275 | 0.3290 | 0.3066 |
0.9182 | 8.33 | 3000 | 16.9089 | 0.3173 | 0.3021 |
0.9182 | 8.61 | 3100 | 16.2800 | 0.3434 | 0.3066 |
0.9182 | 8.89 | 3200 | 16.4016 | 0.3300 | 0.3142 |
0.9182 | 9.17 | 3300 | 17.1270 | 0.3069 | 0.3016 |
0.9182 | 9.44 | 3400 | 16.0886 | 0.3334 | 0.2990 |
0.7575 | 9.72 | 3500 | 17.9885 | 0.3044 | 0.2897 |
0.7575 | 10.0 | 3600 | 16.9147 | 0.3344 | 0.3143 |
0.7575 | 10.28 | 3700 | 17.0150 | 0.3239 | 0.3063 |
0.7575 | 10.56 | 3800 | 17.2972 | 0.3188 | 0.3044 |
0.7575 | 10.83 | 3900 | 17.1954 | 0.3156 | 0.2978 |
0.654 | 11.11 | 4000 | 16.5796 | 0.3358 | 0.3079 |
0.654 | 11.39 | 4100 | 17.8000 | 0.3253 | 0.2998 |
0.654 | 11.67 | 4200 | 17.0779 | 0.3261 | 0.3053 |
0.654 | 11.94 | 4300 | 17.4166 | 0.3129 | 0.3022 |
0.654 | 12.22 | 4400 | 17.3001 | 0.3145 | 0.3053 |
0.5631 | 12.5 | 4500 | 18.0636 | 0.3119 | 0.3024 |
0.5631 | 12.78 | 4600 | 17.2984 | 0.3226 | 0.3088 |
0.5631 | 13.06 | 4700 | 16.9070 | 0.3382 | 0.3150 |
0.5631 | 13.33 | 4800 | 17.3121 | 0.3279 | 0.3142 |
0.5631 | 13.61 | 4900 | 17.1523 | 0.3296 | 0.3179 |
0.5282 | 13.89 | 5000 | 17.8192 | 0.3126 | 0.3031 |
0.5282 | 14.17 | 5100 | 16.7179 | 0.3306 | 0.3117 |
0.5282 | 14.44 | 5200 | 17.9113 | 0.3191 | 0.3102 |
0.5282 | 14.72 | 5300 | 16.8577 | 0.3304 | 0.3121 |
0.5282 | 15.0 | 5400 | 18.0535 | 0.3160 | 0.3061 |
0.4804 | 15.28 | 5500 | 17.8274 | 0.3169 | 0.3059 |
0.4804 | 15.56 | 5600 | 17.0363 | 0.3325 | 0.3193 |
0.4804 | 15.83 | 5700 | 16.8001 | 0.3331 | 0.3186 |
0.4804 | 16.11 | 5800 | 17.4191 | 0.3242 | 0.3143 |
0.4804 | 16.39 | 5900 | 16.8495 | 0.3420 | 0.3263 |
0.4495 | 16.67 | 6000 | 16.8531 | 0.3397 | 0.3189 |
0.4495 | 16.94 | 6100 | 17.4010 | 0.3289 | 0.3167 |
0.4495 | 17.22 | 6200 | 16.3403 | 0.3474 | 0.3284 |
0.4495 | 17.5 | 6300 | 16.8162 | 0.3415 | 0.3272 |
0.4495 | 17.78 | 6400 | 17.3864 | 0.3340 | 0.3198 |
0.4209 | 18.06 | 6500 | 17.6548 | 0.3235 | 0.3126 |
0.4209 | 18.33 | 6600 | 16.0579 | 0.3551 | 0.3288 |
0.4209 | 18.61 | 6700 | 15.8394 | 0.3599 | 0.3361 |
0.4209 | 18.89 | 6800 | 16.9152 | 0.3349 | 0.3180 |
0.4209 | 19.17 | 6900 | 16.2478 | 0.3534 | 0.3286 |
0.3953 | 19.44 | 7000 | 16.8572 | 0.3343 | 0.3222 |
0.3953 | 19.72 | 7100 | 16.4133 | 0.3458 | 0.3291 |
0.3953 | 20.0 | 7200 | 15.6227 | 0.3542 | 0.3309 |
0.3953 | 20.28 | 7300 | 16.2866 | 0.3487 | 0.3271 |
0.3953 | 20.56 | 7400 | 16.6866 | 0.3472 | 0.3231 |
0.378 | 20.83 | 7500 | 15.9135 | 0.3586 | 0.3359 |
0.378 | 21.11 | 7600 | 16.4220 | 0.3483 | 0.3240 |
0.378 | 21.39 | 7700 | 15.9214 | 0.3585 | 0.3380 |
0.378 | 21.67 | 7800 | 16.0507 | 0.3502 | 0.3336 |
0.378 | 21.94 | 7900 | 17.1391 | 0.3333 | 0.3229 |
0.3651 | 22.22 | 8000 | 16.5540 | 0.3449 | 0.3282 |
0.3651 | 22.5 | 8100 | 16.2101 | 0.3501 | 0.3253 |
0.3651 | 22.78 | 8200 | 16.1821 | 0.3515 | 0.3351 |
0.3651 | 23.06 | 8300 | 17.2145 | 0.3306 | 0.3218 |
0.3651 | 23.33 | 8400 | 16.1442 | 0.3491 | 0.3334 |
0.3576 | 23.61 | 8500 | 16.1359 | 0.3492 | 0.3310 |
0.3576 | 23.89 | 8600 | 16.8213 | 0.3366 | 0.3271 |
0.3576 | 24.17 | 8700 | 16.4038 | 0.3450 | 0.3328 |
0.3576 | 24.44 | 8800 | 16.0881 | 0.3521 | 0.3285 |
0.3576 | 24.72 | 8900 | 15.9137 | 0.3595 | 0.3379 |
0.3407 | 25.0 | 9000 | 16.6534 | 0.3392 | 0.3341 |
0.3407 | 25.28 | 9100 | 16.4548 | 0.3450 | 0.3307 |
0.3407 | 25.56 | 9200 | 16.3928 | 0.3484 | 0.3288 |
0.3407 | 25.83 | 9300 | 16.4631 | 0.3471 | 0.3345 |
0.3407 | 26.11 | 9400 | 16.5766 | 0.3465 | 0.3315 |
0.3372 | 26.39 | 9500 | 16.4303 | 0.3479 | 0.3333 |
0.3372 | 26.67 | 9600 | 16.3788 | 0.3493 | 0.3347 |
0.3372 | 26.94 | 9700 | 16.6492 | 0.3441 | 0.3304 |
0.3372 | 27.22 | 9800 | 16.2894 | 0.3520 | 0.3365 |
0.3372 | 27.5 | 9900 | 16.6262 | 0.3445 | 0.3306 |
0.3302 | 27.78 | 10000 | 16.5817 | 0.3461 | 0.3344 |
0.3302 | 28.06 | 10100 | 16.6601 | 0.3464 | 0.3349 |
0.3302 | 28.33 | 10200 | 16.4713 | 0.3492 | 0.3364 |
0.3302 | 28.61 | 10300 | 16.4882 | 0.3478 | 0.3366 |
0.3302 | 28.89 | 10400 | 16.3544 | 0.3502 | 0.3376 |
0.3284 | 29.17 | 10500 | 16.6563 | 0.3451 | 0.3336 |
0.3284 | 29.44 | 10600 | 16.5782 | 0.3460 | 0.3315 |
0.3284 | 29.72 | 10700 | 16.6588 | 0.3440 | 0.3319 |
0.3284 | 30.0 | 10800 | 16.6549 | 0.3446 | 0.3337 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 0
Model tree for haryoaw/scenario-KD-PO-MSV-EN-EN-D2_data-en-massive_all_1_155
Base model
microsoft/mdeberta-v3-base
Finetuned
haryoaw/scenario-MDBT-TCR-MSV-EN