Edit model card

scenario-KD-PO-MSV-EN-EN-D2_data-en-massive_all_1_155

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 16.6549
  • Accuracy: 0.3446
  • F1: 0.3337

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 55
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.28 100 14.6039 0.1460 0.0332
No log 0.56 200 13.6711 0.2254 0.1373
No log 0.83 300 13.3897 0.2697 0.1900
No log 1.11 400 12.8696 0.2938 0.2276
8.6227 1.39 500 13.2466 0.3041 0.2445
8.6227 1.67 600 13.7732 0.2966 0.2455
8.6227 1.94 700 12.6296 0.3268 0.2769
8.6227 2.22 800 13.8225 0.3207 0.2728
8.6227 2.5 900 12.9157 0.3359 0.2878
3.2961 2.78 1000 13.5723 0.3246 0.2959
3.2961 3.06 1100 13.1047 0.3395 0.2893
3.2961 3.33 1200 14.0601 0.3199 0.2866
3.2961 3.61 1300 14.0842 0.3263 0.2965
3.2961 3.89 1400 14.2522 0.3144 0.2827
2.1563 4.17 1500 13.7890 0.3395 0.2904
2.1563 4.44 1600 14.3511 0.3280 0.2918
2.1563 4.72 1700 15.1711 0.3292 0.2792
2.1563 5.0 1800 15.7697 0.3151 0.2757
2.1563 5.28 1900 15.5149 0.3204 0.2941
1.5208 5.56 2000 15.3098 0.3181 0.2967
1.5208 5.83 2100 14.7872 0.3418 0.3052
1.5208 6.11 2200 15.5063 0.3214 0.2953
1.5208 6.39 2300 15.8674 0.3251 0.2960
1.5208 6.67 2400 16.2428 0.3215 0.2983
1.1778 6.94 2500 15.8196 0.3265 0.3121
1.1778 7.22 2600 16.2186 0.3169 0.2915
1.1778 7.5 2700 16.1006 0.3221 0.3010
1.1778 7.78 2800 15.8025 0.3398 0.3043
1.1778 8.06 2900 15.8275 0.3290 0.3066
0.9182 8.33 3000 16.9089 0.3173 0.3021
0.9182 8.61 3100 16.2800 0.3434 0.3066
0.9182 8.89 3200 16.4016 0.3300 0.3142
0.9182 9.17 3300 17.1270 0.3069 0.3016
0.9182 9.44 3400 16.0886 0.3334 0.2990
0.7575 9.72 3500 17.9885 0.3044 0.2897
0.7575 10.0 3600 16.9147 0.3344 0.3143
0.7575 10.28 3700 17.0150 0.3239 0.3063
0.7575 10.56 3800 17.2972 0.3188 0.3044
0.7575 10.83 3900 17.1954 0.3156 0.2978
0.654 11.11 4000 16.5796 0.3358 0.3079
0.654 11.39 4100 17.8000 0.3253 0.2998
0.654 11.67 4200 17.0779 0.3261 0.3053
0.654 11.94 4300 17.4166 0.3129 0.3022
0.654 12.22 4400 17.3001 0.3145 0.3053
0.5631 12.5 4500 18.0636 0.3119 0.3024
0.5631 12.78 4600 17.2984 0.3226 0.3088
0.5631 13.06 4700 16.9070 0.3382 0.3150
0.5631 13.33 4800 17.3121 0.3279 0.3142
0.5631 13.61 4900 17.1523 0.3296 0.3179
0.5282 13.89 5000 17.8192 0.3126 0.3031
0.5282 14.17 5100 16.7179 0.3306 0.3117
0.5282 14.44 5200 17.9113 0.3191 0.3102
0.5282 14.72 5300 16.8577 0.3304 0.3121
0.5282 15.0 5400 18.0535 0.3160 0.3061
0.4804 15.28 5500 17.8274 0.3169 0.3059
0.4804 15.56 5600 17.0363 0.3325 0.3193
0.4804 15.83 5700 16.8001 0.3331 0.3186
0.4804 16.11 5800 17.4191 0.3242 0.3143
0.4804 16.39 5900 16.8495 0.3420 0.3263
0.4495 16.67 6000 16.8531 0.3397 0.3189
0.4495 16.94 6100 17.4010 0.3289 0.3167
0.4495 17.22 6200 16.3403 0.3474 0.3284
0.4495 17.5 6300 16.8162 0.3415 0.3272
0.4495 17.78 6400 17.3864 0.3340 0.3198
0.4209 18.06 6500 17.6548 0.3235 0.3126
0.4209 18.33 6600 16.0579 0.3551 0.3288
0.4209 18.61 6700 15.8394 0.3599 0.3361
0.4209 18.89 6800 16.9152 0.3349 0.3180
0.4209 19.17 6900 16.2478 0.3534 0.3286
0.3953 19.44 7000 16.8572 0.3343 0.3222
0.3953 19.72 7100 16.4133 0.3458 0.3291
0.3953 20.0 7200 15.6227 0.3542 0.3309
0.3953 20.28 7300 16.2866 0.3487 0.3271
0.3953 20.56 7400 16.6866 0.3472 0.3231
0.378 20.83 7500 15.9135 0.3586 0.3359
0.378 21.11 7600 16.4220 0.3483 0.3240
0.378 21.39 7700 15.9214 0.3585 0.3380
0.378 21.67 7800 16.0507 0.3502 0.3336
0.378 21.94 7900 17.1391 0.3333 0.3229
0.3651 22.22 8000 16.5540 0.3449 0.3282
0.3651 22.5 8100 16.2101 0.3501 0.3253
0.3651 22.78 8200 16.1821 0.3515 0.3351
0.3651 23.06 8300 17.2145 0.3306 0.3218
0.3651 23.33 8400 16.1442 0.3491 0.3334
0.3576 23.61 8500 16.1359 0.3492 0.3310
0.3576 23.89 8600 16.8213 0.3366 0.3271
0.3576 24.17 8700 16.4038 0.3450 0.3328
0.3576 24.44 8800 16.0881 0.3521 0.3285
0.3576 24.72 8900 15.9137 0.3595 0.3379
0.3407 25.0 9000 16.6534 0.3392 0.3341
0.3407 25.28 9100 16.4548 0.3450 0.3307
0.3407 25.56 9200 16.3928 0.3484 0.3288
0.3407 25.83 9300 16.4631 0.3471 0.3345
0.3407 26.11 9400 16.5766 0.3465 0.3315
0.3372 26.39 9500 16.4303 0.3479 0.3333
0.3372 26.67 9600 16.3788 0.3493 0.3347
0.3372 26.94 9700 16.6492 0.3441 0.3304
0.3372 27.22 9800 16.2894 0.3520 0.3365
0.3372 27.5 9900 16.6262 0.3445 0.3306
0.3302 27.78 10000 16.5817 0.3461 0.3344
0.3302 28.06 10100 16.6601 0.3464 0.3349
0.3302 28.33 10200 16.4713 0.3492 0.3364
0.3302 28.61 10300 16.4882 0.3478 0.3366
0.3302 28.89 10400 16.3544 0.3502 0.3376
0.3284 29.17 10500 16.6563 0.3451 0.3336
0.3284 29.44 10600 16.5782 0.3460 0.3315
0.3284 29.72 10700 16.6588 0.3440 0.3319
0.3284 30.0 10800 16.6549 0.3446 0.3337

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PO-MSV-EN-EN-D2_data-en-massive_all_1_155

Finetuned
(11)
this model