metadata
license: mit
base_model: haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1
tags:
- generated_from_trainer
datasets:
- massive
metrics:
- accuracy
- f1
model-index:
- name: scenario-KD-PR-MSV-D2_data-AmazonScience_massive_all_1_144
results: []
scenario-KD-PR-MSV-D2_data-AmazonScience_massive_all_1_144
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 1.4509
- Accuracy: 0.8576
- F1: 0.8345
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.4358 | 0.27 | 5000 | 1.5925 | 0.8182 | 0.7743 |
1.291 | 0.53 | 10000 | 1.5425 | 0.8257 | 0.7947 |
1.207 | 0.8 | 15000 | 1.4865 | 0.8367 | 0.8041 |
1.0927 | 1.07 | 20000 | 1.4621 | 0.8439 | 0.8136 |
1.0824 | 1.34 | 25000 | 1.4744 | 0.8388 | 0.8066 |
1.0564 | 1.6 | 30000 | 1.4548 | 0.8454 | 0.8143 |
1.0461 | 1.87 | 35000 | 1.4542 | 0.8452 | 0.8125 |
0.9801 | 2.14 | 40000 | 1.4552 | 0.8461 | 0.8179 |
0.9812 | 2.41 | 45000 | 1.4601 | 0.8467 | 0.8224 |
0.9878 | 2.67 | 50000 | 1.4641 | 0.8454 | 0.8238 |
0.9767 | 2.94 | 55000 | 1.4509 | 0.8480 | 0.8259 |
0.9201 | 3.21 | 60000 | 1.4822 | 0.8429 | 0.8192 |
0.9235 | 3.47 | 65000 | 1.4676 | 0.8451 | 0.8237 |
0.9299 | 3.74 | 70000 | 1.4711 | 0.8456 | 0.8216 |
0.9204 | 4.01 | 75000 | 1.4883 | 0.8425 | 0.8188 |
0.8934 | 4.28 | 80000 | 1.4950 | 0.8425 | 0.8188 |
0.8967 | 4.54 | 85000 | 1.4874 | 0.8444 | 0.8193 |
0.9039 | 4.81 | 90000 | 1.4726 | 0.8480 | 0.8238 |
0.8764 | 5.08 | 95000 | 1.4938 | 0.8446 | 0.8197 |
0.8737 | 5.34 | 100000 | 1.4776 | 0.8484 | 0.8282 |
0.8766 | 5.61 | 105000 | 1.4764 | 0.8488 | 0.8257 |
0.8836 | 5.88 | 110000 | 1.4775 | 0.8464 | 0.8221 |
0.861 | 6.15 | 115000 | 1.4765 | 0.8486 | 0.8244 |
0.8595 | 6.41 | 120000 | 1.4726 | 0.8502 | 0.8276 |
0.8687 | 6.68 | 125000 | 1.4702 | 0.8502 | 0.8230 |
0.8641 | 6.95 | 130000 | 1.4841 | 0.8480 | 0.8272 |
0.8474 | 7.22 | 135000 | 1.4871 | 0.8485 | 0.8229 |
0.8503 | 7.48 | 140000 | 1.4910 | 0.8456 | 0.8181 |
0.8548 | 7.75 | 145000 | 1.4877 | 0.8484 | 0.8223 |
0.8404 | 8.02 | 150000 | 1.4682 | 0.8509 | 0.8275 |
0.8481 | 8.28 | 155000 | 1.4994 | 0.8471 | 0.8226 |
0.8427 | 8.55 | 160000 | 1.4933 | 0.8476 | 0.8240 |
0.8418 | 8.82 | 165000 | 1.4812 | 0.8484 | 0.8201 |
0.8323 | 9.09 | 170000 | 1.4808 | 0.8500 | 0.8254 |
0.8353 | 9.35 | 175000 | 1.4962 | 0.8462 | 0.8196 |
0.8331 | 9.62 | 180000 | 1.4947 | 0.8459 | 0.8219 |
0.8384 | 9.89 | 185000 | 1.4916 | 0.8476 | 0.8228 |
0.8202 | 10.15 | 190000 | 1.4909 | 0.8476 | 0.8232 |
0.8308 | 10.42 | 195000 | 1.4897 | 0.8498 | 0.8233 |
0.8283 | 10.69 | 200000 | 1.4882 | 0.8476 | 0.8246 |
0.8303 | 10.96 | 205000 | 1.4837 | 0.8477 | 0.8228 |
0.8154 | 11.22 | 210000 | 1.4930 | 0.8489 | 0.8233 |
0.8269 | 11.49 | 215000 | 1.5044 | 0.8454 | 0.8191 |
0.8172 | 11.76 | 220000 | 1.4946 | 0.8484 | 0.8237 |
0.8071 | 12.03 | 225000 | 1.4824 | 0.8513 | 0.8271 |
0.8124 | 12.29 | 230000 | 1.4778 | 0.8514 | 0.8262 |
0.8187 | 12.56 | 235000 | 1.4866 | 0.8478 | 0.8236 |
0.8153 | 12.83 | 240000 | 1.5002 | 0.8469 | 0.8257 |
0.8117 | 13.09 | 245000 | 1.4883 | 0.8492 | 0.8235 |
0.807 | 13.36 | 250000 | 1.4906 | 0.8511 | 0.8293 |
0.8151 | 13.63 | 255000 | 1.4702 | 0.8526 | 0.8295 |
0.8107 | 13.9 | 260000 | 1.4772 | 0.8513 | 0.8237 |
0.8012 | 14.16 | 265000 | 1.4784 | 0.8518 | 0.8245 |
0.8039 | 14.43 | 270000 | 1.4933 | 0.8485 | 0.8258 |
0.8031 | 14.7 | 275000 | 1.4811 | 0.8519 | 0.8252 |
0.8058 | 14.96 | 280000 | 1.4802 | 0.8508 | 0.8263 |
0.8014 | 15.23 | 285000 | 1.4919 | 0.8498 | 0.8240 |
0.8002 | 15.5 | 290000 | 1.4780 | 0.8515 | 0.8247 |
0.8043 | 15.77 | 295000 | 1.4755 | 0.8519 | 0.8237 |
0.7967 | 16.03 | 300000 | 1.4765 | 0.8516 | 0.8296 |
0.7958 | 16.3 | 305000 | 1.4910 | 0.8509 | 0.8260 |
0.8032 | 16.57 | 310000 | 1.4795 | 0.8499 | 0.8221 |
0.8002 | 16.84 | 315000 | 1.4864 | 0.8497 | 0.8235 |
0.7938 | 17.1 | 320000 | 1.4832 | 0.8509 | 0.8280 |
0.7981 | 17.37 | 325000 | 1.4866 | 0.8508 | 0.8285 |
0.798 | 17.64 | 330000 | 1.4922 | 0.8496 | 0.8274 |
0.8004 | 17.9 | 335000 | 1.4848 | 0.8505 | 0.8278 |
0.7899 | 18.17 | 340000 | 1.4919 | 0.8490 | 0.8244 |
0.7961 | 18.44 | 345000 | 1.4764 | 0.8522 | 0.8300 |
0.793 | 18.71 | 350000 | 1.4795 | 0.8522 | 0.8279 |
0.7933 | 18.97 | 355000 | 1.4845 | 0.8511 | 0.8257 |
0.788 | 19.24 | 360000 | 1.4814 | 0.8508 | 0.8272 |
0.787 | 19.51 | 365000 | 1.4739 | 0.8524 | 0.8282 |
0.7911 | 19.77 | 370000 | 1.4788 | 0.8514 | 0.8305 |
0.7843 | 20.04 | 375000 | 1.4762 | 0.8533 | 0.8285 |
0.7859 | 20.31 | 380000 | 1.4777 | 0.8525 | 0.8299 |
0.7846 | 20.58 | 385000 | 1.4696 | 0.8524 | 0.8309 |
0.7857 | 20.84 | 390000 | 1.4812 | 0.8519 | 0.8267 |
0.7861 | 21.11 | 395000 | 1.4924 | 0.8491 | 0.8241 |
0.7845 | 21.38 | 400000 | 1.4847 | 0.8511 | 0.8253 |
0.7847 | 21.65 | 405000 | 1.4748 | 0.8527 | 0.8277 |
0.785 | 21.91 | 410000 | 1.4794 | 0.8530 | 0.8281 |
0.7816 | 22.18 | 415000 | 1.4764 | 0.8529 | 0.8268 |
0.7845 | 22.45 | 420000 | 1.4738 | 0.8529 | 0.8288 |
0.7807 | 22.71 | 425000 | 1.4864 | 0.8511 | 0.8278 |
0.7809 | 22.98 | 430000 | 1.4782 | 0.8509 | 0.8259 |
0.7761 | 23.25 | 435000 | 1.4829 | 0.8527 | 0.8281 |
0.7815 | 23.52 | 440000 | 1.4627 | 0.8541 | 0.8298 |
0.7833 | 23.78 | 445000 | 1.4756 | 0.8532 | 0.8293 |
0.7786 | 24.05 | 450000 | 1.4612 | 0.8556 | 0.8318 |
0.7826 | 24.32 | 455000 | 1.4582 | 0.8553 | 0.8304 |
0.7821 | 24.58 | 460000 | 1.4614 | 0.8562 | 0.8323 |
0.7793 | 24.85 | 465000 | 1.4600 | 0.8564 | 0.8319 |
0.7763 | 25.12 | 470000 | 1.4650 | 0.8549 | 0.8311 |
0.776 | 25.39 | 475000 | 1.4658 | 0.8553 | 0.8285 |
0.7796 | 25.65 | 480000 | 1.4572 | 0.8560 | 0.8308 |
0.7794 | 25.92 | 485000 | 1.4638 | 0.8545 | 0.8302 |
0.7747 | 26.19 | 490000 | 1.4541 | 0.8565 | 0.8329 |
0.7761 | 26.46 | 495000 | 1.4596 | 0.8553 | 0.8283 |
0.7754 | 26.72 | 500000 | 1.4622 | 0.8566 | 0.8325 |
0.7769 | 26.99 | 505000 | 1.4665 | 0.8544 | 0.8303 |
0.777 | 27.26 | 510000 | 1.4622 | 0.8557 | 0.8300 |
0.7741 | 27.52 | 515000 | 1.4599 | 0.8562 | 0.8321 |
0.7747 | 27.79 | 520000 | 1.4575 | 0.8558 | 0.8301 |
0.7764 | 28.06 | 525000 | 1.4513 | 0.8565 | 0.8310 |
0.7731 | 28.33 | 530000 | 1.4551 | 0.8562 | 0.8322 |
0.7752 | 28.59 | 535000 | 1.4530 | 0.8568 | 0.8322 |
0.7729 | 28.86 | 540000 | 1.4563 | 0.8562 | 0.8323 |
0.7751 | 29.13 | 545000 | 1.4548 | 0.8567 | 0.8332 |
0.7742 | 29.39 | 550000 | 1.4494 | 0.8569 | 0.8333 |
0.7725 | 29.66 | 555000 | 1.4496 | 0.8576 | 0.8342 |
0.7756 | 29.93 | 560000 | 1.4509 | 0.8576 | 0.8345 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3