metadata
license: mit
base_model: haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: scenario-KD-PR-MSV-D2_data-cl-cardiff_cl_only55
results: []
scenario-KD-PR-MSV-D2_data-cl-cardiff_cl_only55
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3677
- Accuracy: 0.4468
- F1: 0.4461
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.09 | 250 | 1.2834 | 0.4591 | 0.4503 |
1.2011 | 2.17 | 500 | 1.3504 | 0.4483 | 0.4403 |
1.2011 | 3.26 | 750 | 1.3205 | 0.4468 | 0.4415 |
1.0583 | 4.35 | 1000 | 1.3622 | 0.4406 | 0.4355 |
1.0583 | 5.43 | 1250 | 1.3754 | 0.4375 | 0.4333 |
0.9917 | 6.52 | 1500 | 1.3816 | 0.4398 | 0.4380 |
0.9917 | 7.61 | 1750 | 1.3783 | 0.4475 | 0.4434 |
0.9569 | 8.7 | 2000 | 1.3621 | 0.4529 | 0.4497 |
0.9569 | 9.78 | 2250 | 1.3658 | 0.4460 | 0.4450 |
0.939 | 10.87 | 2500 | 1.3567 | 0.4630 | 0.4616 |
0.939 | 11.96 | 2750 | 1.3631 | 0.4676 | 0.4675 |
0.9262 | 13.04 | 3000 | 1.3922 | 0.4421 | 0.4304 |
0.9262 | 14.13 | 3250 | 1.3950 | 0.4275 | 0.4135 |
0.9176 | 15.22 | 3500 | 1.3653 | 0.4660 | 0.4658 |
0.9176 | 16.3 | 3750 | 1.3690 | 0.4498 | 0.4449 |
0.9114 | 17.39 | 4000 | 1.3964 | 0.4398 | 0.4336 |
0.9114 | 18.48 | 4250 | 1.3738 | 0.4614 | 0.4600 |
0.9058 | 19.57 | 4500 | 1.3574 | 0.4730 | 0.4728 |
0.9058 | 20.65 | 4750 | 1.3716 | 0.4606 | 0.4577 |
0.9018 | 21.74 | 5000 | 1.3684 | 0.4583 | 0.4578 |
0.9018 | 22.83 | 5250 | 1.3791 | 0.4568 | 0.4534 |
0.8988 | 23.91 | 5500 | 1.3708 | 0.4560 | 0.4549 |
0.8988 | 25.0 | 5750 | 1.3438 | 0.4730 | 0.4728 |
0.8963 | 26.09 | 6000 | 1.3544 | 0.4622 | 0.4615 |
0.8963 | 27.17 | 6250 | 1.3508 | 0.4622 | 0.4590 |
0.8937 | 28.26 | 6500 | 1.3531 | 0.4637 | 0.4633 |
0.8937 | 29.35 | 6750 | 1.3677 | 0.4468 | 0.4461 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3