Edit model card

scenario-KD-PR-MSV-D2_data-cl-massive_all_1_155

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5659
  • Accuracy: 0.6234
  • F1: 0.5935

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 55
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.3685 0.56 5000 2.3825 0.6101 0.5721
1.1362 1.11 10000 2.3303 0.6277 0.5814
1.1011 1.67 15000 2.2524 0.6458 0.5921
1.0061 2.22 20000 2.3519 0.6330 0.5861
1.004 2.78 25000 2.3514 0.6260 0.5797
0.9543 3.33 30000 2.4451 0.6188 0.5833
0.957 3.89 35000 2.3458 0.6352 0.5832
0.9182 4.45 40000 2.4666 0.6177 0.5823
0.9207 5.0 45000 2.4348 0.6297 0.5832
0.8814 5.56 50000 2.5433 0.6051 0.5682
0.8671 6.11 55000 2.5489 0.6119 0.5763
0.8732 6.67 60000 2.4481 0.6266 0.5702
0.8564 7.23 65000 2.5152 0.6242 0.5843
0.8639 7.78 70000 2.5782 0.6095 0.5733
0.8547 8.34 75000 2.5712 0.6124 0.5778
0.8539 8.89 80000 2.5092 0.6143 0.5676
0.8379 9.45 85000 2.5264 0.6182 0.5763
0.8388 10.0 90000 2.5294 0.6244 0.5873
0.8348 10.56 95000 2.6556 0.6065 0.5799
0.8216 11.12 100000 2.5251 0.6213 0.5724
0.8285 11.67 105000 2.5312 0.6201 0.5772
0.8187 12.23 110000 2.6448 0.6051 0.5773
0.8244 12.78 115000 2.5533 0.6168 0.5823
0.8135 13.34 120000 2.5669 0.6161 0.5743
0.8185 13.9 125000 2.5724 0.6178 0.5839
0.8147 14.45 130000 2.5826 0.6152 0.5770
0.8122 15.01 135000 2.5439 0.6247 0.5838
0.8045 15.56 140000 2.5643 0.6169 0.5721
0.7994 16.12 145000 2.5887 0.6196 0.5782
0.8002 16.67 150000 2.5524 0.6195 0.5845
0.7976 17.23 155000 2.6154 0.6112 0.5819
0.798 17.79 160000 2.5928 0.6148 0.5824
0.7995 18.34 165000 2.6006 0.6140 0.5811
0.801 18.9 170000 2.5610 0.6212 0.5863
0.7937 19.45 175000 2.5948 0.6145 0.5873
0.7965 20.01 180000 2.6013 0.6136 0.5859
0.7911 20.56 185000 2.6488 0.6106 0.5906
0.7873 21.12 190000 2.6141 0.6134 0.5810
0.7931 21.68 195000 2.6865 0.6010 0.5795
0.7866 22.23 200000 2.5861 0.6160 0.5810
0.7867 22.79 205000 2.5334 0.6224 0.5886
0.7841 23.34 210000 2.5656 0.6272 0.5909
0.7897 23.9 215000 2.4915 0.6307 0.5949
0.7857 24.46 220000 2.6083 0.6166 0.5886
0.7841 25.01 225000 2.5430 0.6262 0.5941
0.7842 25.57 230000 2.6212 0.6123 0.5852
0.7816 26.12 235000 2.6234 0.6127 0.5934
0.7818 26.68 240000 2.6039 0.6196 0.5945
0.7809 27.23 245000 2.6044 0.6180 0.5937
0.7822 27.79 250000 2.5414 0.6254 0.5931
0.7835 28.35 255000 2.5310 0.6263 0.5910
0.781 28.9 260000 2.5196 0.6291 0.5974
0.7777 29.46 265000 2.5659 0.6234 0.5935

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PR-MSV-D2_data-cl-massive_all_1_155

Finetuned
(22)
this model