Edit model card

scenario-KD-PR-MSV-EN-EN-D2_data-en-massive_all_1_144

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3870
  • Accuracy: 0.3917
  • F1: 0.3631

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 44
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.28 100 3.7985 0.2429 0.1191
No log 0.56 200 3.5797 0.3350 0.2393
No log 0.83 300 3.4614 0.3511 0.2584
No log 1.11 400 3.4068 0.3689 0.2947
2.3847 1.39 500 3.5361 0.3480 0.3101
2.3847 1.67 600 3.8981 0.2962 0.2743
2.3847 1.94 700 3.5978 0.3348 0.3009
2.3847 2.22 800 3.4251 0.3693 0.3189
2.3847 2.5 900 3.6238 0.3387 0.2955
1.4359 2.78 1000 3.4170 0.3725 0.3228
1.4359 3.06 1100 3.4919 0.3577 0.3094
1.4359 3.33 1200 3.5121 0.3529 0.3200
1.4359 3.61 1300 3.5243 0.3552 0.3181
1.4359 3.89 1400 3.5490 0.3579 0.3271
1.2213 4.17 1500 3.7359 0.3382 0.3141
1.2213 4.44 1600 3.4488 0.3750 0.3190
1.2213 4.72 1700 3.8128 0.3207 0.3010
1.2213 5.0 1800 3.6438 0.3436 0.3157
1.2213 5.28 1900 3.6529 0.3533 0.3232
1.085 5.56 2000 3.7020 0.3460 0.3180
1.085 5.83 2100 3.5656 0.3617 0.3212
1.085 6.11 2200 3.7196 0.3451 0.3331
1.085 6.39 2300 3.4895 0.3783 0.3449
1.085 6.67 2400 3.4481 0.3827 0.3461
1.0193 6.94 2500 3.5108 0.3743 0.3371
1.0193 7.22 2600 3.6085 0.3680 0.3401
1.0193 7.5 2700 3.7560 0.3461 0.3396
1.0193 7.78 2800 3.6117 0.3654 0.3430
1.0193 8.06 2900 3.8823 0.3372 0.3342
0.9642 8.33 3000 4.1240 0.2905 0.3077
0.9642 8.61 3100 3.5464 0.3624 0.3257
0.9642 8.89 3200 3.7347 0.3436 0.3277
0.9642 9.17 3300 3.7061 0.3393 0.3172
0.9642 9.44 3400 3.7392 0.3448 0.3316
0.9379 9.72 3500 3.7291 0.3382 0.3217
0.9379 10.0 3600 3.4839 0.3661 0.3376
0.9379 10.28 3700 3.5460 0.3703 0.3383
0.9379 10.56 3800 3.5424 0.3719 0.3402
0.9379 10.83 3900 3.7746 0.3507 0.3373
0.9141 11.11 4000 3.6570 0.3653 0.3369
0.9141 11.39 4100 3.6878 0.3567 0.3366
0.9141 11.67 4200 3.4917 0.3786 0.3503
0.9141 11.94 4300 3.6285 0.3568 0.3375
0.9141 12.22 4400 3.7634 0.3416 0.3232
0.8926 12.5 4500 3.6110 0.3640 0.3335
0.8926 12.78 4600 3.7520 0.3365 0.3206
0.8926 13.06 4700 3.6192 0.3649 0.3343
0.8926 13.33 4800 3.6111 0.3648 0.3258
0.8926 13.61 4900 3.6608 0.3553 0.3316
0.881 13.89 5000 3.6331 0.3596 0.3414
0.881 14.17 5100 3.5635 0.3697 0.3486
0.881 14.44 5200 3.5596 0.3728 0.3476
0.881 14.72 5300 3.4594 0.3890 0.3505
0.881 15.0 5400 3.5156 0.3752 0.3387
0.8711 15.28 5500 3.7477 0.3417 0.3220
0.8711 15.56 5600 3.4787 0.3726 0.3433
0.8711 15.83 5700 3.3340 0.4009 0.3567
0.8711 16.11 5800 3.5768 0.3636 0.3398
0.8711 16.39 5900 3.5530 0.3682 0.3436
0.8624 16.67 6000 3.5606 0.3622 0.3428
0.8624 16.94 6100 3.5734 0.3639 0.3428
0.8624 17.22 6200 3.6723 0.3560 0.3326
0.8624 17.5 6300 3.4305 0.3926 0.3590
0.8624 17.78 6400 3.5705 0.3697 0.3485
0.8568 18.06 6500 3.5787 0.3717 0.3562
0.8568 18.33 6600 3.5437 0.3682 0.3459
0.8568 18.61 6700 3.4142 0.3933 0.3551
0.8568 18.89 6800 3.5347 0.3757 0.3533
0.8568 19.17 6900 3.4827 0.3751 0.3474
0.8485 19.44 7000 3.5962 0.3686 0.3475
0.8485 19.72 7100 3.6892 0.3526 0.3444
0.8485 20.0 7200 3.7340 0.3527 0.3421
0.8485 20.28 7300 3.6498 0.3529 0.3388
0.8485 20.56 7400 3.5198 0.3712 0.3440
0.8454 20.83 7500 3.5547 0.3731 0.3460
0.8454 21.11 7600 3.4824 0.3827 0.3530
0.8454 21.39 7700 3.7520 0.3479 0.3489
0.8454 21.67 7800 3.4160 0.3927 0.3530
0.8454 21.94 7900 3.4024 0.3916 0.3555
0.8442 22.22 8000 3.5260 0.3766 0.3571
0.8442 22.5 8100 3.7724 0.3411 0.3307
0.8442 22.78 8200 3.4421 0.3906 0.3611
0.8442 23.06 8300 3.5752 0.3697 0.3521
0.8442 23.33 8400 3.6166 0.3607 0.3474
0.8387 23.61 8500 3.4849 0.3772 0.3468
0.8387 23.89 8600 3.6369 0.3550 0.3435
0.8387 24.17 8700 3.5332 0.3731 0.3564
0.8387 24.44 8800 3.4314 0.3856 0.3612
0.8387 24.72 8900 3.5849 0.3646 0.3489
0.8373 25.0 9000 3.4793 0.3775 0.3532
0.8373 25.28 9100 3.4012 0.3874 0.3601
0.8373 25.56 9200 3.5138 0.3746 0.3531
0.8373 25.83 9300 3.3756 0.3955 0.3663
0.8373 26.11 9400 3.4281 0.3847 0.3546
0.8357 26.39 9500 3.3819 0.3928 0.3576
0.8357 26.67 9600 3.3574 0.3965 0.3640
0.8357 26.94 9700 3.3550 0.3962 0.3621
0.8357 27.22 9800 3.4785 0.3769 0.3571
0.8357 27.5 9900 3.5116 0.3717 0.3495
0.8341 27.78 10000 3.4470 0.3797 0.3562
0.8341 28.06 10100 3.4118 0.3878 0.3642
0.8341 28.33 10200 3.3945 0.3910 0.3637
0.8341 28.61 10300 3.4078 0.3854 0.3591
0.8341 28.89 10400 3.5367 0.3678 0.3548
0.8325 29.17 10500 3.4340 0.3825 0.3605
0.8325 29.44 10600 3.4028 0.3875 0.3604
0.8325 29.72 10700 3.3913 0.3904 0.3635
0.8325 30.0 10800 3.3870 0.3917 0.3631

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PR-MSV-EN-EN-D2_data-en-massive_all_1_144

Finetuned
(11)
this model