haryoaw commited on
Commit
9b4de85
1 Parent(s): 7ebdd1d

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +171 -0
  2. config.json +159 -0
  3. eval_results_ml.json +1 -0
  4. pytorch_model.bin +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - massive
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: scenario-KD-PR-MSV-EN-EN-D2_data-en-massive_all_1_144
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # scenario-KD-PR-MSV-EN-EN-D2_data-en-massive_all_1_144
20
+
21
+ This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1) on the massive dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 3.3870
24
+ - Accuracy: 0.3917
25
+ - F1: 0.3631
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 5e-05
45
+ - train_batch_size: 32
46
+ - eval_batch_size: 32
47
+ - seed: 44
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 30
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
56
+ | No log | 0.28 | 100 | 3.7985 | 0.2429 | 0.1191 |
57
+ | No log | 0.56 | 200 | 3.5797 | 0.3350 | 0.2393 |
58
+ | No log | 0.83 | 300 | 3.4614 | 0.3511 | 0.2584 |
59
+ | No log | 1.11 | 400 | 3.4068 | 0.3689 | 0.2947 |
60
+ | 2.3847 | 1.39 | 500 | 3.5361 | 0.3480 | 0.3101 |
61
+ | 2.3847 | 1.67 | 600 | 3.8981 | 0.2962 | 0.2743 |
62
+ | 2.3847 | 1.94 | 700 | 3.5978 | 0.3348 | 0.3009 |
63
+ | 2.3847 | 2.22 | 800 | 3.4251 | 0.3693 | 0.3189 |
64
+ | 2.3847 | 2.5 | 900 | 3.6238 | 0.3387 | 0.2955 |
65
+ | 1.4359 | 2.78 | 1000 | 3.4170 | 0.3725 | 0.3228 |
66
+ | 1.4359 | 3.06 | 1100 | 3.4919 | 0.3577 | 0.3094 |
67
+ | 1.4359 | 3.33 | 1200 | 3.5121 | 0.3529 | 0.3200 |
68
+ | 1.4359 | 3.61 | 1300 | 3.5243 | 0.3552 | 0.3181 |
69
+ | 1.4359 | 3.89 | 1400 | 3.5490 | 0.3579 | 0.3271 |
70
+ | 1.2213 | 4.17 | 1500 | 3.7359 | 0.3382 | 0.3141 |
71
+ | 1.2213 | 4.44 | 1600 | 3.4488 | 0.3750 | 0.3190 |
72
+ | 1.2213 | 4.72 | 1700 | 3.8128 | 0.3207 | 0.3010 |
73
+ | 1.2213 | 5.0 | 1800 | 3.6438 | 0.3436 | 0.3157 |
74
+ | 1.2213 | 5.28 | 1900 | 3.6529 | 0.3533 | 0.3232 |
75
+ | 1.085 | 5.56 | 2000 | 3.7020 | 0.3460 | 0.3180 |
76
+ | 1.085 | 5.83 | 2100 | 3.5656 | 0.3617 | 0.3212 |
77
+ | 1.085 | 6.11 | 2200 | 3.7196 | 0.3451 | 0.3331 |
78
+ | 1.085 | 6.39 | 2300 | 3.4895 | 0.3783 | 0.3449 |
79
+ | 1.085 | 6.67 | 2400 | 3.4481 | 0.3827 | 0.3461 |
80
+ | 1.0193 | 6.94 | 2500 | 3.5108 | 0.3743 | 0.3371 |
81
+ | 1.0193 | 7.22 | 2600 | 3.6085 | 0.3680 | 0.3401 |
82
+ | 1.0193 | 7.5 | 2700 | 3.7560 | 0.3461 | 0.3396 |
83
+ | 1.0193 | 7.78 | 2800 | 3.6117 | 0.3654 | 0.3430 |
84
+ | 1.0193 | 8.06 | 2900 | 3.8823 | 0.3372 | 0.3342 |
85
+ | 0.9642 | 8.33 | 3000 | 4.1240 | 0.2905 | 0.3077 |
86
+ | 0.9642 | 8.61 | 3100 | 3.5464 | 0.3624 | 0.3257 |
87
+ | 0.9642 | 8.89 | 3200 | 3.7347 | 0.3436 | 0.3277 |
88
+ | 0.9642 | 9.17 | 3300 | 3.7061 | 0.3393 | 0.3172 |
89
+ | 0.9642 | 9.44 | 3400 | 3.7392 | 0.3448 | 0.3316 |
90
+ | 0.9379 | 9.72 | 3500 | 3.7291 | 0.3382 | 0.3217 |
91
+ | 0.9379 | 10.0 | 3600 | 3.4839 | 0.3661 | 0.3376 |
92
+ | 0.9379 | 10.28 | 3700 | 3.5460 | 0.3703 | 0.3383 |
93
+ | 0.9379 | 10.56 | 3800 | 3.5424 | 0.3719 | 0.3402 |
94
+ | 0.9379 | 10.83 | 3900 | 3.7746 | 0.3507 | 0.3373 |
95
+ | 0.9141 | 11.11 | 4000 | 3.6570 | 0.3653 | 0.3369 |
96
+ | 0.9141 | 11.39 | 4100 | 3.6878 | 0.3567 | 0.3366 |
97
+ | 0.9141 | 11.67 | 4200 | 3.4917 | 0.3786 | 0.3503 |
98
+ | 0.9141 | 11.94 | 4300 | 3.6285 | 0.3568 | 0.3375 |
99
+ | 0.9141 | 12.22 | 4400 | 3.7634 | 0.3416 | 0.3232 |
100
+ | 0.8926 | 12.5 | 4500 | 3.6110 | 0.3640 | 0.3335 |
101
+ | 0.8926 | 12.78 | 4600 | 3.7520 | 0.3365 | 0.3206 |
102
+ | 0.8926 | 13.06 | 4700 | 3.6192 | 0.3649 | 0.3343 |
103
+ | 0.8926 | 13.33 | 4800 | 3.6111 | 0.3648 | 0.3258 |
104
+ | 0.8926 | 13.61 | 4900 | 3.6608 | 0.3553 | 0.3316 |
105
+ | 0.881 | 13.89 | 5000 | 3.6331 | 0.3596 | 0.3414 |
106
+ | 0.881 | 14.17 | 5100 | 3.5635 | 0.3697 | 0.3486 |
107
+ | 0.881 | 14.44 | 5200 | 3.5596 | 0.3728 | 0.3476 |
108
+ | 0.881 | 14.72 | 5300 | 3.4594 | 0.3890 | 0.3505 |
109
+ | 0.881 | 15.0 | 5400 | 3.5156 | 0.3752 | 0.3387 |
110
+ | 0.8711 | 15.28 | 5500 | 3.7477 | 0.3417 | 0.3220 |
111
+ | 0.8711 | 15.56 | 5600 | 3.4787 | 0.3726 | 0.3433 |
112
+ | 0.8711 | 15.83 | 5700 | 3.3340 | 0.4009 | 0.3567 |
113
+ | 0.8711 | 16.11 | 5800 | 3.5768 | 0.3636 | 0.3398 |
114
+ | 0.8711 | 16.39 | 5900 | 3.5530 | 0.3682 | 0.3436 |
115
+ | 0.8624 | 16.67 | 6000 | 3.5606 | 0.3622 | 0.3428 |
116
+ | 0.8624 | 16.94 | 6100 | 3.5734 | 0.3639 | 0.3428 |
117
+ | 0.8624 | 17.22 | 6200 | 3.6723 | 0.3560 | 0.3326 |
118
+ | 0.8624 | 17.5 | 6300 | 3.4305 | 0.3926 | 0.3590 |
119
+ | 0.8624 | 17.78 | 6400 | 3.5705 | 0.3697 | 0.3485 |
120
+ | 0.8568 | 18.06 | 6500 | 3.5787 | 0.3717 | 0.3562 |
121
+ | 0.8568 | 18.33 | 6600 | 3.5437 | 0.3682 | 0.3459 |
122
+ | 0.8568 | 18.61 | 6700 | 3.4142 | 0.3933 | 0.3551 |
123
+ | 0.8568 | 18.89 | 6800 | 3.5347 | 0.3757 | 0.3533 |
124
+ | 0.8568 | 19.17 | 6900 | 3.4827 | 0.3751 | 0.3474 |
125
+ | 0.8485 | 19.44 | 7000 | 3.5962 | 0.3686 | 0.3475 |
126
+ | 0.8485 | 19.72 | 7100 | 3.6892 | 0.3526 | 0.3444 |
127
+ | 0.8485 | 20.0 | 7200 | 3.7340 | 0.3527 | 0.3421 |
128
+ | 0.8485 | 20.28 | 7300 | 3.6498 | 0.3529 | 0.3388 |
129
+ | 0.8485 | 20.56 | 7400 | 3.5198 | 0.3712 | 0.3440 |
130
+ | 0.8454 | 20.83 | 7500 | 3.5547 | 0.3731 | 0.3460 |
131
+ | 0.8454 | 21.11 | 7600 | 3.4824 | 0.3827 | 0.3530 |
132
+ | 0.8454 | 21.39 | 7700 | 3.7520 | 0.3479 | 0.3489 |
133
+ | 0.8454 | 21.67 | 7800 | 3.4160 | 0.3927 | 0.3530 |
134
+ | 0.8454 | 21.94 | 7900 | 3.4024 | 0.3916 | 0.3555 |
135
+ | 0.8442 | 22.22 | 8000 | 3.5260 | 0.3766 | 0.3571 |
136
+ | 0.8442 | 22.5 | 8100 | 3.7724 | 0.3411 | 0.3307 |
137
+ | 0.8442 | 22.78 | 8200 | 3.4421 | 0.3906 | 0.3611 |
138
+ | 0.8442 | 23.06 | 8300 | 3.5752 | 0.3697 | 0.3521 |
139
+ | 0.8442 | 23.33 | 8400 | 3.6166 | 0.3607 | 0.3474 |
140
+ | 0.8387 | 23.61 | 8500 | 3.4849 | 0.3772 | 0.3468 |
141
+ | 0.8387 | 23.89 | 8600 | 3.6369 | 0.3550 | 0.3435 |
142
+ | 0.8387 | 24.17 | 8700 | 3.5332 | 0.3731 | 0.3564 |
143
+ | 0.8387 | 24.44 | 8800 | 3.4314 | 0.3856 | 0.3612 |
144
+ | 0.8387 | 24.72 | 8900 | 3.5849 | 0.3646 | 0.3489 |
145
+ | 0.8373 | 25.0 | 9000 | 3.4793 | 0.3775 | 0.3532 |
146
+ | 0.8373 | 25.28 | 9100 | 3.4012 | 0.3874 | 0.3601 |
147
+ | 0.8373 | 25.56 | 9200 | 3.5138 | 0.3746 | 0.3531 |
148
+ | 0.8373 | 25.83 | 9300 | 3.3756 | 0.3955 | 0.3663 |
149
+ | 0.8373 | 26.11 | 9400 | 3.4281 | 0.3847 | 0.3546 |
150
+ | 0.8357 | 26.39 | 9500 | 3.3819 | 0.3928 | 0.3576 |
151
+ | 0.8357 | 26.67 | 9600 | 3.3574 | 0.3965 | 0.3640 |
152
+ | 0.8357 | 26.94 | 9700 | 3.3550 | 0.3962 | 0.3621 |
153
+ | 0.8357 | 27.22 | 9800 | 3.4785 | 0.3769 | 0.3571 |
154
+ | 0.8357 | 27.5 | 9900 | 3.5116 | 0.3717 | 0.3495 |
155
+ | 0.8341 | 27.78 | 10000 | 3.4470 | 0.3797 | 0.3562 |
156
+ | 0.8341 | 28.06 | 10100 | 3.4118 | 0.3878 | 0.3642 |
157
+ | 0.8341 | 28.33 | 10200 | 3.3945 | 0.3910 | 0.3637 |
158
+ | 0.8341 | 28.61 | 10300 | 3.4078 | 0.3854 | 0.3591 |
159
+ | 0.8341 | 28.89 | 10400 | 3.5367 | 0.3678 | 0.3548 |
160
+ | 0.8325 | 29.17 | 10500 | 3.4340 | 0.3825 | 0.3605 |
161
+ | 0.8325 | 29.44 | 10600 | 3.4028 | 0.3875 | 0.3604 |
162
+ | 0.8325 | 29.72 | 10700 | 3.3913 | 0.3904 | 0.3635 |
163
+ | 0.8325 | 30.0 | 10800 | 3.3870 | 0.3917 | 0.3631 |
164
+
165
+
166
+ ### Framework versions
167
+
168
+ - Transformers 4.33.3
169
+ - Pytorch 2.1.1+cu121
170
+ - Datasets 2.14.5
171
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1",
3
+ "architectures": [
4
+ "DebertaForSequenceClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6",
18
+ "7": "LABEL_7",
19
+ "8": "LABEL_8",
20
+ "9": "LABEL_9",
21
+ "10": "LABEL_10",
22
+ "11": "LABEL_11",
23
+ "12": "LABEL_12",
24
+ "13": "LABEL_13",
25
+ "14": "LABEL_14",
26
+ "15": "LABEL_15",
27
+ "16": "LABEL_16",
28
+ "17": "LABEL_17",
29
+ "18": "LABEL_18",
30
+ "19": "LABEL_19",
31
+ "20": "LABEL_20",
32
+ "21": "LABEL_21",
33
+ "22": "LABEL_22",
34
+ "23": "LABEL_23",
35
+ "24": "LABEL_24",
36
+ "25": "LABEL_25",
37
+ "26": "LABEL_26",
38
+ "27": "LABEL_27",
39
+ "28": "LABEL_28",
40
+ "29": "LABEL_29",
41
+ "30": "LABEL_30",
42
+ "31": "LABEL_31",
43
+ "32": "LABEL_32",
44
+ "33": "LABEL_33",
45
+ "34": "LABEL_34",
46
+ "35": "LABEL_35",
47
+ "36": "LABEL_36",
48
+ "37": "LABEL_37",
49
+ "38": "LABEL_38",
50
+ "39": "LABEL_39",
51
+ "40": "LABEL_40",
52
+ "41": "LABEL_41",
53
+ "42": "LABEL_42",
54
+ "43": "LABEL_43",
55
+ "44": "LABEL_44",
56
+ "45": "LABEL_45",
57
+ "46": "LABEL_46",
58
+ "47": "LABEL_47",
59
+ "48": "LABEL_48",
60
+ "49": "LABEL_49",
61
+ "50": "LABEL_50",
62
+ "51": "LABEL_51",
63
+ "52": "LABEL_52",
64
+ "53": "LABEL_53",
65
+ "54": "LABEL_54",
66
+ "55": "LABEL_55",
67
+ "56": "LABEL_56",
68
+ "57": "LABEL_57",
69
+ "58": "LABEL_58",
70
+ "59": "LABEL_59"
71
+ },
72
+ "initializer_range": 0.02,
73
+ "intermediate_size": 3072,
74
+ "label2id": {
75
+ "LABEL_0": 0,
76
+ "LABEL_1": 1,
77
+ "LABEL_10": 10,
78
+ "LABEL_11": 11,
79
+ "LABEL_12": 12,
80
+ "LABEL_13": 13,
81
+ "LABEL_14": 14,
82
+ "LABEL_15": 15,
83
+ "LABEL_16": 16,
84
+ "LABEL_17": 17,
85
+ "LABEL_18": 18,
86
+ "LABEL_19": 19,
87
+ "LABEL_2": 2,
88
+ "LABEL_20": 20,
89
+ "LABEL_21": 21,
90
+ "LABEL_22": 22,
91
+ "LABEL_23": 23,
92
+ "LABEL_24": 24,
93
+ "LABEL_25": 25,
94
+ "LABEL_26": 26,
95
+ "LABEL_27": 27,
96
+ "LABEL_28": 28,
97
+ "LABEL_29": 29,
98
+ "LABEL_3": 3,
99
+ "LABEL_30": 30,
100
+ "LABEL_31": 31,
101
+ "LABEL_32": 32,
102
+ "LABEL_33": 33,
103
+ "LABEL_34": 34,
104
+ "LABEL_35": 35,
105
+ "LABEL_36": 36,
106
+ "LABEL_37": 37,
107
+ "LABEL_38": 38,
108
+ "LABEL_39": 39,
109
+ "LABEL_4": 4,
110
+ "LABEL_40": 40,
111
+ "LABEL_41": 41,
112
+ "LABEL_42": 42,
113
+ "LABEL_43": 43,
114
+ "LABEL_44": 44,
115
+ "LABEL_45": 45,
116
+ "LABEL_46": 46,
117
+ "LABEL_47": 47,
118
+ "LABEL_48": 48,
119
+ "LABEL_49": 49,
120
+ "LABEL_5": 5,
121
+ "LABEL_50": 50,
122
+ "LABEL_51": 51,
123
+ "LABEL_52": 52,
124
+ "LABEL_53": 53,
125
+ "LABEL_54": 54,
126
+ "LABEL_55": 55,
127
+ "LABEL_56": 56,
128
+ "LABEL_57": 57,
129
+ "LABEL_58": 58,
130
+ "LABEL_59": 59,
131
+ "LABEL_6": 6,
132
+ "LABEL_7": 7,
133
+ "LABEL_8": 8,
134
+ "LABEL_9": 9
135
+ },
136
+ "layer_norm_eps": 1e-07,
137
+ "max_position_embeddings": 512,
138
+ "max_relative_positions": -1,
139
+ "model_type": "deberta-v2",
140
+ "norm_rel_ebd": "layer_norm",
141
+ "num_attention_heads": 12,
142
+ "num_hidden_layers": 6,
143
+ "pad_token_id": 0,
144
+ "pooler_dropout": 0,
145
+ "pooler_hidden_act": "gelu",
146
+ "pooler_hidden_size": 768,
147
+ "pos_att_type": [
148
+ "p2c",
149
+ "c2p"
150
+ ],
151
+ "position_biased_input": false,
152
+ "position_buckets": 256,
153
+ "relative_attention": true,
154
+ "share_att_key": true,
155
+ "torch_dtype": "float32",
156
+ "transformers_version": "4.33.3",
157
+ "type_vocab_size": 0,
158
+ "vocab_size": 251000
159
+ }
eval_results_ml.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ms-MY": {"f1": 0.3975499055824509, "accuracy": 0.4660390047074647}, "sl-SL": {"f1": 0.3045190543625748, "accuracy": 0.31506388702084737}, "nl-NL": {"f1": 0.5897717509653548, "accuracy": 0.6540013449899126}, "th-TH": {"f1": 0.49698802276157084, "accuracy": 0.5568258238063215}, "fr-FR": {"f1": 0.5147577363361451, "accuracy": 0.5531271015467384}, "te-IN": {"f1": 0.15899336960379462, "accuracy": 0.2531943510423672}, "ru-RU": {"f1": 0.5110501907363587, "accuracy": 0.5615332885003362}, "vi-VN": {"f1": 0.20093993401827476, "accuracy": 0.2767316745124412}, "cy-GB": {"f1": 0.08287565115054527, "accuracy": 0.1546738399462004}, "el-GR": {"f1": 0.2767079066667972, "accuracy": 0.3500336247478144}, "sv-SE": {"f1": 0.5435229943151835, "accuracy": 0.5806993947545394}, "fa-IR": {"f1": 0.3265599415085125, "accuracy": 0.44586415601882984}, "fi-FI": {"f1": 0.30510716992553344, "accuracy": 0.3782784129119032}, "hu-HU": {"f1": 0.3905345067426931, "accuracy": 0.4596503026227303}, "ar-SA": {"f1": 0.2515158476346244, "accuracy": 0.31304640215198387}, "pt-PT": {"f1": 0.5016136447625852, "accuracy": 0.5689307330195024}, "sw-KE": {"f1": 0.1378393056223751, "accuracy": 0.1956960322797579}, "ca-ES": {"f1": 0.3750326591153735, "accuracy": 0.42131809011432414}, "ka-GE": {"f1": 0.1797077380274374, "accuracy": 0.242098184263618}, "nb-NO": {"f1": 0.5592813959804855, "accuracy": 0.5729657027572294}, "is-IS": {"f1": 0.2182460318175056, "accuracy": 0.28412911903160726}, "ur-PK": {"f1": 0.13432601795340818, "accuracy": 0.2027572293207801}, "jv-ID": {"f1": 0.17700250903703454, "accuracy": 0.2511768661735037}, "af-ZA": {"f1": 0.3776338390068858, "accuracy": 0.4182918628110289}, "sq-AL": {"f1": 0.2884393855057176, "accuracy": 0.3362474781439139}, "pl-PL": {"f1": 0.433826591509244, "accuracy": 0.5100874243443174}, "ja-JP": {"f1": 0.5346082371210467, "accuracy": 0.6018829858776059}, "bn-BD": {"f1": 0.13841709532676963, "accuracy": 0.23234700739744452}, "tr-TR": {"f1": 0.42822958634957464, "accuracy": 0.4858776059179556}, "tl-PH": {"f1": 0.27309009816598645, "accuracy": 0.32750504371217215}, "de-DE": {"f1": 0.550189283596003, "accuracy": 0.6082716879623403}, "ko-KR": {"f1": 0.29797070672739734, "accuracy": 0.36012104909213183}, "am-ET": {"f1": 0.06703928595304988, "accuracy": 0.13416274377942167}, "ta-IN": {"f1": 0.23790799111168306, "accuracy": 0.31271015467383995}, "it-IT": {"f1": 0.4897735012507575, "accuracy": 0.5258910558170814}, "hi-IN": {"f1": 0.2309069298667293, "accuracy": 0.30598520511096167}, "hy-AM": {"f1": 0.21129722009784016, "accuracy": 0.2716879623402825}, "zh-CN": {"f1": 0.5369413121151773, "accuracy": 0.5783456624075319}, "zh-TW": {"f1": 0.4845757568107216, "accuracy": 0.5255548083389374}, "kn-IN": {"f1": 0.18565882824544971, "accuracy": 0.2706792199058507}, "en-US": {"f1": 0.8528836920667268, "accuracy": 0.8722259583053127}, "mn-MN": {"f1": 0.14825627858365503, "accuracy": 0.21418964357767317}, "lv-LV": {"f1": 0.24993494473968156, "accuracy": 0.29690652320107597}, "my-MM": {"f1": 0.24538445345850873, "accuracy": 0.33759246805648957}, "ml-IN": {"f1": 0.22211716171854276, "accuracy": 0.31304640215198387}, "da-DK": {"f1": 0.5629404885546283, "accuracy": 0.6028917283120376}, "ro-RO": {"f1": 0.43591660363015633, "accuracy": 0.48688634835238737}, "id-ID": {"f1": 0.48619135416946946, "accuracy": 0.5494283792871554}, "az-AZ": {"f1": 0.2608326137311189, "accuracy": 0.34229993275050435}, "he-IL": {"f1": 0.25605985267351977, "accuracy": 0.316408876933423}, "km-KH": {"f1": 0.32375704641043956, "accuracy": 0.40719569603227973}, "es-ES": {"f1": 0.5520927527571755, "accuracy": 0.5786819098856758}, "all": {"f1": 0.3756824799347348, "accuracy": 0.4075448761057369}}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27909fbccaa9f92152118009104d04ef31d98174e193e128b8cd463a231f7fd8
3
+ size 946915690
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1c4b909293b1e548adbe6328ffaa1f0579c24f9ee0d3d98de656a29f15ef9c4
3
+ size 4600