Edit model card

scenario-KD-PR-MSV-EN-EN-D2_data-en-massive_all_1_155

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3196
  • Accuracy: 0.4000
  • F1: 0.3699

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 55
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.28 100 3.7488 0.2740 0.1332
No log 0.56 200 3.7532 0.2882 0.2126
No log 0.83 300 3.5330 0.3461 0.2709
No log 1.11 400 3.5996 0.3329 0.2751
2.3142 1.39 500 3.5192 0.3493 0.2852
2.3142 1.67 600 3.4897 0.3511 0.2900
2.3142 1.94 700 3.4726 0.3593 0.3203
2.3142 2.22 800 3.5140 0.3578 0.3084
2.3142 2.5 900 3.5512 0.3474 0.3007
1.3972 2.78 1000 3.4956 0.3584 0.3205
1.3972 3.06 1100 3.4138 0.3751 0.3204
1.3972 3.33 1200 3.5342 0.3637 0.3218
1.3972 3.61 1300 3.4981 0.3607 0.3301
1.3972 3.89 1400 3.3664 0.3832 0.3389
1.1915 4.17 1500 3.4706 0.3685 0.3358
1.1915 4.44 1600 3.5094 0.3776 0.3451
1.1915 4.72 1700 3.5614 0.3575 0.3247
1.1915 5.0 1800 3.4497 0.3779 0.3280
1.1915 5.28 1900 3.5372 0.3560 0.3182
1.0674 5.56 2000 3.6683 0.3411 0.3208
1.0674 5.83 2100 3.5785 0.3517 0.3191
1.0674 6.11 2200 3.4856 0.3787 0.3421
1.0674 6.39 2300 3.6501 0.3562 0.3282
1.0674 6.67 2400 3.6527 0.3599 0.3446
1.0031 6.94 2500 3.5173 0.3712 0.3335
1.0031 7.22 2600 3.4004 0.3906 0.3434
1.0031 7.5 2700 3.3956 0.3882 0.3438
1.0031 7.78 2800 3.4553 0.3757 0.3337
1.0031 8.06 2900 3.5141 0.3785 0.3372
0.9544 8.33 3000 3.4607 0.3745 0.3343
0.9544 8.61 3100 3.5721 0.3698 0.3362
0.9544 8.89 3200 3.4986 0.3748 0.3461
0.9544 9.17 3300 3.5570 0.3638 0.3288
0.9544 9.44 3400 3.4755 0.3801 0.3485
0.9298 9.72 3500 3.5956 0.3633 0.3296
0.9298 10.0 3600 3.7990 0.3346 0.3274
0.9298 10.28 3700 3.4749 0.3801 0.3315
0.9298 10.56 3800 3.5354 0.3668 0.3312
0.9298 10.83 3900 3.5521 0.3653 0.3335
0.9048 11.11 4000 3.5742 0.3695 0.3573
0.9048 11.39 4100 3.6353 0.3566 0.3437
0.9048 11.67 4200 3.5652 0.3707 0.3462
0.9048 11.94 4300 3.5651 0.3657 0.3350
0.9048 12.22 4400 3.4828 0.3792 0.3402
0.8875 12.5 4500 3.4154 0.3903 0.3518
0.8875 12.78 4600 3.5579 0.3669 0.3446
0.8875 13.06 4700 3.5480 0.3678 0.3399
0.8875 13.33 4800 3.7011 0.3535 0.3374
0.8875 13.61 4900 3.5428 0.3682 0.3547
0.8728 13.89 5000 3.5717 0.3697 0.3478
0.8728 14.17 5100 3.5094 0.3767 0.3472
0.8728 14.44 5200 3.5012 0.3688 0.3455
0.8728 14.72 5300 3.5059 0.3699 0.3451
0.8728 15.0 5400 3.4948 0.3834 0.3514
0.864 15.28 5500 3.4681 0.3805 0.3496
0.864 15.56 5600 3.6296 0.3571 0.3337
0.864 15.83 5700 3.4815 0.3774 0.3338
0.864 16.11 5800 3.5419 0.3714 0.3297
0.864 16.39 5900 3.4306 0.3868 0.3511
0.8581 16.67 6000 3.4905 0.3821 0.3566
0.8581 16.94 6100 3.3185 0.4046 0.3510
0.8581 17.22 6200 3.5655 0.3669 0.3322
0.8581 17.5 6300 3.4551 0.3848 0.3516
0.8581 17.78 6400 3.4727 0.3825 0.3495
0.8495 18.06 6500 3.4013 0.3863 0.3444
0.8495 18.33 6600 3.3959 0.3865 0.3545
0.8495 18.61 6700 3.3582 0.3876 0.3502
0.8495 18.89 6800 3.4716 0.3786 0.3425
0.8495 19.17 6900 3.3779 0.3912 0.3550
0.8449 19.44 7000 3.5027 0.3768 0.3494
0.8449 19.72 7100 3.3231 0.4070 0.3654
0.8449 20.0 7200 3.2727 0.4034 0.3706
0.8449 20.28 7300 3.4841 0.3778 0.3556
0.8449 20.56 7400 3.4613 0.3833 0.3505
0.8406 20.83 7500 3.4084 0.3861 0.3487
0.8406 21.11 7600 3.3010 0.3978 0.3590
0.8406 21.39 7700 3.3726 0.3909 0.3583
0.8406 21.67 7800 3.3891 0.3923 0.3596
0.8406 21.94 7900 3.4166 0.3859 0.3622
0.838 22.22 8000 3.3450 0.3940 0.3638
0.838 22.5 8100 3.3409 0.3977 0.3661
0.838 22.78 8200 3.3983 0.3930 0.3665
0.838 23.06 8300 3.4341 0.3814 0.3640
0.838 23.33 8400 3.4732 0.3769 0.3584
0.8354 23.61 8500 3.4941 0.3754 0.3475
0.8354 23.89 8600 3.4902 0.3706 0.3543
0.8354 24.17 8700 3.3955 0.3869 0.3577
0.8354 24.44 8800 3.4000 0.3896 0.3627
0.8354 24.72 8900 3.4061 0.3876 0.3593
0.8297 25.0 9000 3.3989 0.3864 0.3494
0.8297 25.28 9100 3.4073 0.3903 0.3585
0.8297 25.56 9200 3.3108 0.4050 0.3676
0.8297 25.83 9300 3.4202 0.3853 0.3587
0.8297 26.11 9400 3.3379 0.3987 0.3688
0.8291 26.39 9500 3.3224 0.4004 0.3664
0.8291 26.67 9600 3.2891 0.4051 0.3701
0.8291 26.94 9700 3.2901 0.4029 0.3705
0.8291 27.22 9800 3.3273 0.4008 0.3660
0.8291 27.5 9900 3.3488 0.3953 0.3699
0.8273 27.78 10000 3.3654 0.3938 0.3665
0.8273 28.06 10100 3.3521 0.3971 0.3695
0.8273 28.33 10200 3.2965 0.4055 0.3733
0.8273 28.61 10300 3.3683 0.3946 0.3679
0.8273 28.89 10400 3.3095 0.4033 0.3718
0.8267 29.17 10500 3.3116 0.4021 0.3726
0.8267 29.44 10600 3.3001 0.4044 0.3739
0.8267 29.72 10700 3.3072 0.4015 0.3701
0.8267 30.0 10800 3.3196 0.4000 0.3699

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PR-MSV-EN-EN-D2_data-en-massive_all_1_155

Finetuned
(11)
this model