scenario-KD-PR-MSV-EN-EN-D2_data-en-massive_all_1_155
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 3.3196
- Accuracy: 0.4000
- F1: 0.3699
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.28 | 100 | 3.7488 | 0.2740 | 0.1332 |
No log | 0.56 | 200 | 3.7532 | 0.2882 | 0.2126 |
No log | 0.83 | 300 | 3.5330 | 0.3461 | 0.2709 |
No log | 1.11 | 400 | 3.5996 | 0.3329 | 0.2751 |
2.3142 | 1.39 | 500 | 3.5192 | 0.3493 | 0.2852 |
2.3142 | 1.67 | 600 | 3.4897 | 0.3511 | 0.2900 |
2.3142 | 1.94 | 700 | 3.4726 | 0.3593 | 0.3203 |
2.3142 | 2.22 | 800 | 3.5140 | 0.3578 | 0.3084 |
2.3142 | 2.5 | 900 | 3.5512 | 0.3474 | 0.3007 |
1.3972 | 2.78 | 1000 | 3.4956 | 0.3584 | 0.3205 |
1.3972 | 3.06 | 1100 | 3.4138 | 0.3751 | 0.3204 |
1.3972 | 3.33 | 1200 | 3.5342 | 0.3637 | 0.3218 |
1.3972 | 3.61 | 1300 | 3.4981 | 0.3607 | 0.3301 |
1.3972 | 3.89 | 1400 | 3.3664 | 0.3832 | 0.3389 |
1.1915 | 4.17 | 1500 | 3.4706 | 0.3685 | 0.3358 |
1.1915 | 4.44 | 1600 | 3.5094 | 0.3776 | 0.3451 |
1.1915 | 4.72 | 1700 | 3.5614 | 0.3575 | 0.3247 |
1.1915 | 5.0 | 1800 | 3.4497 | 0.3779 | 0.3280 |
1.1915 | 5.28 | 1900 | 3.5372 | 0.3560 | 0.3182 |
1.0674 | 5.56 | 2000 | 3.6683 | 0.3411 | 0.3208 |
1.0674 | 5.83 | 2100 | 3.5785 | 0.3517 | 0.3191 |
1.0674 | 6.11 | 2200 | 3.4856 | 0.3787 | 0.3421 |
1.0674 | 6.39 | 2300 | 3.6501 | 0.3562 | 0.3282 |
1.0674 | 6.67 | 2400 | 3.6527 | 0.3599 | 0.3446 |
1.0031 | 6.94 | 2500 | 3.5173 | 0.3712 | 0.3335 |
1.0031 | 7.22 | 2600 | 3.4004 | 0.3906 | 0.3434 |
1.0031 | 7.5 | 2700 | 3.3956 | 0.3882 | 0.3438 |
1.0031 | 7.78 | 2800 | 3.4553 | 0.3757 | 0.3337 |
1.0031 | 8.06 | 2900 | 3.5141 | 0.3785 | 0.3372 |
0.9544 | 8.33 | 3000 | 3.4607 | 0.3745 | 0.3343 |
0.9544 | 8.61 | 3100 | 3.5721 | 0.3698 | 0.3362 |
0.9544 | 8.89 | 3200 | 3.4986 | 0.3748 | 0.3461 |
0.9544 | 9.17 | 3300 | 3.5570 | 0.3638 | 0.3288 |
0.9544 | 9.44 | 3400 | 3.4755 | 0.3801 | 0.3485 |
0.9298 | 9.72 | 3500 | 3.5956 | 0.3633 | 0.3296 |
0.9298 | 10.0 | 3600 | 3.7990 | 0.3346 | 0.3274 |
0.9298 | 10.28 | 3700 | 3.4749 | 0.3801 | 0.3315 |
0.9298 | 10.56 | 3800 | 3.5354 | 0.3668 | 0.3312 |
0.9298 | 10.83 | 3900 | 3.5521 | 0.3653 | 0.3335 |
0.9048 | 11.11 | 4000 | 3.5742 | 0.3695 | 0.3573 |
0.9048 | 11.39 | 4100 | 3.6353 | 0.3566 | 0.3437 |
0.9048 | 11.67 | 4200 | 3.5652 | 0.3707 | 0.3462 |
0.9048 | 11.94 | 4300 | 3.5651 | 0.3657 | 0.3350 |
0.9048 | 12.22 | 4400 | 3.4828 | 0.3792 | 0.3402 |
0.8875 | 12.5 | 4500 | 3.4154 | 0.3903 | 0.3518 |
0.8875 | 12.78 | 4600 | 3.5579 | 0.3669 | 0.3446 |
0.8875 | 13.06 | 4700 | 3.5480 | 0.3678 | 0.3399 |
0.8875 | 13.33 | 4800 | 3.7011 | 0.3535 | 0.3374 |
0.8875 | 13.61 | 4900 | 3.5428 | 0.3682 | 0.3547 |
0.8728 | 13.89 | 5000 | 3.5717 | 0.3697 | 0.3478 |
0.8728 | 14.17 | 5100 | 3.5094 | 0.3767 | 0.3472 |
0.8728 | 14.44 | 5200 | 3.5012 | 0.3688 | 0.3455 |
0.8728 | 14.72 | 5300 | 3.5059 | 0.3699 | 0.3451 |
0.8728 | 15.0 | 5400 | 3.4948 | 0.3834 | 0.3514 |
0.864 | 15.28 | 5500 | 3.4681 | 0.3805 | 0.3496 |
0.864 | 15.56 | 5600 | 3.6296 | 0.3571 | 0.3337 |
0.864 | 15.83 | 5700 | 3.4815 | 0.3774 | 0.3338 |
0.864 | 16.11 | 5800 | 3.5419 | 0.3714 | 0.3297 |
0.864 | 16.39 | 5900 | 3.4306 | 0.3868 | 0.3511 |
0.8581 | 16.67 | 6000 | 3.4905 | 0.3821 | 0.3566 |
0.8581 | 16.94 | 6100 | 3.3185 | 0.4046 | 0.3510 |
0.8581 | 17.22 | 6200 | 3.5655 | 0.3669 | 0.3322 |
0.8581 | 17.5 | 6300 | 3.4551 | 0.3848 | 0.3516 |
0.8581 | 17.78 | 6400 | 3.4727 | 0.3825 | 0.3495 |
0.8495 | 18.06 | 6500 | 3.4013 | 0.3863 | 0.3444 |
0.8495 | 18.33 | 6600 | 3.3959 | 0.3865 | 0.3545 |
0.8495 | 18.61 | 6700 | 3.3582 | 0.3876 | 0.3502 |
0.8495 | 18.89 | 6800 | 3.4716 | 0.3786 | 0.3425 |
0.8495 | 19.17 | 6900 | 3.3779 | 0.3912 | 0.3550 |
0.8449 | 19.44 | 7000 | 3.5027 | 0.3768 | 0.3494 |
0.8449 | 19.72 | 7100 | 3.3231 | 0.4070 | 0.3654 |
0.8449 | 20.0 | 7200 | 3.2727 | 0.4034 | 0.3706 |
0.8449 | 20.28 | 7300 | 3.4841 | 0.3778 | 0.3556 |
0.8449 | 20.56 | 7400 | 3.4613 | 0.3833 | 0.3505 |
0.8406 | 20.83 | 7500 | 3.4084 | 0.3861 | 0.3487 |
0.8406 | 21.11 | 7600 | 3.3010 | 0.3978 | 0.3590 |
0.8406 | 21.39 | 7700 | 3.3726 | 0.3909 | 0.3583 |
0.8406 | 21.67 | 7800 | 3.3891 | 0.3923 | 0.3596 |
0.8406 | 21.94 | 7900 | 3.4166 | 0.3859 | 0.3622 |
0.838 | 22.22 | 8000 | 3.3450 | 0.3940 | 0.3638 |
0.838 | 22.5 | 8100 | 3.3409 | 0.3977 | 0.3661 |
0.838 | 22.78 | 8200 | 3.3983 | 0.3930 | 0.3665 |
0.838 | 23.06 | 8300 | 3.4341 | 0.3814 | 0.3640 |
0.838 | 23.33 | 8400 | 3.4732 | 0.3769 | 0.3584 |
0.8354 | 23.61 | 8500 | 3.4941 | 0.3754 | 0.3475 |
0.8354 | 23.89 | 8600 | 3.4902 | 0.3706 | 0.3543 |
0.8354 | 24.17 | 8700 | 3.3955 | 0.3869 | 0.3577 |
0.8354 | 24.44 | 8800 | 3.4000 | 0.3896 | 0.3627 |
0.8354 | 24.72 | 8900 | 3.4061 | 0.3876 | 0.3593 |
0.8297 | 25.0 | 9000 | 3.3989 | 0.3864 | 0.3494 |
0.8297 | 25.28 | 9100 | 3.4073 | 0.3903 | 0.3585 |
0.8297 | 25.56 | 9200 | 3.3108 | 0.4050 | 0.3676 |
0.8297 | 25.83 | 9300 | 3.4202 | 0.3853 | 0.3587 |
0.8297 | 26.11 | 9400 | 3.3379 | 0.3987 | 0.3688 |
0.8291 | 26.39 | 9500 | 3.3224 | 0.4004 | 0.3664 |
0.8291 | 26.67 | 9600 | 3.2891 | 0.4051 | 0.3701 |
0.8291 | 26.94 | 9700 | 3.2901 | 0.4029 | 0.3705 |
0.8291 | 27.22 | 9800 | 3.3273 | 0.4008 | 0.3660 |
0.8291 | 27.5 | 9900 | 3.3488 | 0.3953 | 0.3699 |
0.8273 | 27.78 | 10000 | 3.3654 | 0.3938 | 0.3665 |
0.8273 | 28.06 | 10100 | 3.3521 | 0.3971 | 0.3695 |
0.8273 | 28.33 | 10200 | 3.2965 | 0.4055 | 0.3733 |
0.8273 | 28.61 | 10300 | 3.3683 | 0.3946 | 0.3679 |
0.8273 | 28.89 | 10400 | 3.3095 | 0.4033 | 0.3718 |
0.8267 | 29.17 | 10500 | 3.3116 | 0.4021 | 0.3726 |
0.8267 | 29.44 | 10600 | 3.3001 | 0.4044 | 0.3739 |
0.8267 | 29.72 | 10700 | 3.3072 | 0.4015 | 0.3701 |
0.8267 | 30.0 | 10800 | 3.3196 | 0.4000 | 0.3699 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 0
Model tree for haryoaw/scenario-KD-PR-MSV-EN-EN-D2_data-en-massive_all_1_155
Base model
microsoft/mdeberta-v3-base
Finetuned
haryoaw/scenario-MDBT-TCR-MSV-EN