Edit model card

scenario-KD-PR-MSV-EN-EN-D2_data-en-massive_all_1_166

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9034
  • Accuracy: 0.3152
  • F1: 0.2967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.28 100 4.2349 0.0671 0.0036
No log 0.56 200 4.0584 0.1478 0.0387
No log 0.83 300 3.8868 0.2207 0.1016
No log 1.11 400 3.8941 0.2315 0.1309
3.3584 1.39 500 3.7344 0.2735 0.1722
3.3584 1.67 600 3.8172 0.2668 0.1933
3.3584 1.94 700 3.7445 0.2709 0.2084
3.3584 2.22 800 3.6741 0.3013 0.2250
3.3584 2.5 900 3.7111 0.2996 0.2395
1.98 2.78 1000 3.6822 0.2994 0.2445
1.98 3.06 1100 3.7436 0.2984 0.2477
1.98 3.33 1200 3.7195 0.3040 0.2515
1.98 3.61 1300 3.8800 0.2706 0.2273
1.98 3.89 1400 3.7345 0.3057 0.2428
1.5602 4.17 1500 3.8605 0.3010 0.2528
1.5602 4.44 1600 3.7124 0.3140 0.2674
1.5602 4.72 1700 3.7400 0.3041 0.2521
1.5602 5.0 1800 3.9425 0.2957 0.2605
1.5602 5.28 1900 3.7719 0.3133 0.2768
1.3533 5.56 2000 3.8076 0.3100 0.2835
1.3533 5.83 2100 3.6673 0.3258 0.2794
1.3533 6.11 2200 3.8029 0.3080 0.2641
1.3533 6.39 2300 3.7847 0.3079 0.2601
1.3533 6.67 2400 3.8791 0.2994 0.2807
1.2425 6.94 2500 3.7637 0.3122 0.2892
1.2425 7.22 2600 3.8474 0.3155 0.2742
1.2425 7.5 2700 3.8424 0.3131 0.2776
1.2425 7.78 2800 3.8016 0.3113 0.2648
1.2425 8.06 2900 3.8632 0.2981 0.2643
1.1513 8.33 3000 3.8469 0.3088 0.2705
1.1513 8.61 3100 3.9476 0.2929 0.2589
1.1513 8.89 3200 3.8249 0.3178 0.2684
1.1513 9.17 3300 3.7724 0.3166 0.2801
1.1513 9.44 3400 3.7976 0.3215 0.2793
1.0936 9.72 3500 3.6198 0.3498 0.3023
1.0936 10.0 3600 3.8257 0.3075 0.2775
1.0936 10.28 3700 3.7182 0.3224 0.2892
1.0936 10.56 3800 3.8149 0.3149 0.2797
1.0936 10.83 3900 3.7853 0.3276 0.2893
1.0476 11.11 4000 3.8488 0.3177 0.2833
1.0476 11.39 4100 4.0615 0.2979 0.2812
1.0476 11.67 4200 3.8836 0.3178 0.2891
1.0476 11.94 4300 4.1136 0.2832 0.2705
1.0476 12.22 4400 3.8156 0.3144 0.2999
1.0048 12.5 4500 3.9173 0.3117 0.2946
1.0048 12.78 4600 3.7431 0.3293 0.2965
1.0048 13.06 4700 3.7538 0.3245 0.2914
1.0048 13.33 4800 3.9135 0.2957 0.2827
1.0048 13.61 4900 3.8702 0.3133 0.2926
0.9752 13.89 5000 3.8238 0.3131 0.2861
0.9752 14.17 5100 3.9863 0.2986 0.2860
0.9752 14.44 5200 3.9071 0.3068 0.2891
0.9752 14.72 5300 4.1397 0.2902 0.2831
0.9752 15.0 5400 4.0661 0.2916 0.2760
0.9544 15.28 5500 3.9804 0.3059 0.2848
0.9544 15.56 5600 4.1628 0.2815 0.2757
0.9544 15.83 5700 3.8083 0.3233 0.2940
0.9544 16.11 5800 3.8357 0.3144 0.2821
0.9544 16.39 5900 4.0037 0.2987 0.2914
0.935 16.67 6000 3.8943 0.3073 0.2803
0.935 16.94 6100 3.8387 0.3171 0.2978
0.935 17.22 6200 3.9244 0.3046 0.2799
0.935 17.5 6300 3.9478 0.3065 0.2900
0.935 17.78 6400 4.0418 0.3036 0.2754
0.9186 18.06 6500 4.1112 0.2862 0.2773
0.9186 18.33 6600 4.1101 0.2907 0.2750
0.9186 18.61 6700 4.0951 0.2908 0.2763
0.9186 18.89 6800 3.9274 0.3049 0.2824
0.9186 19.17 6900 3.9502 0.2988 0.2843
0.9081 19.44 7000 4.0642 0.2935 0.2879
0.9081 19.72 7100 3.8820 0.3102 0.2914
0.9081 20.0 7200 4.0206 0.2987 0.2893
0.9081 20.28 7300 3.9475 0.3105 0.2949
0.9081 20.56 7400 3.9688 0.3088 0.2868
0.9007 20.83 7500 3.9359 0.3088 0.2867
0.9007 21.11 7600 4.0488 0.3001 0.2862
0.9007 21.39 7700 3.8327 0.3246 0.2988
0.9007 21.67 7800 3.9259 0.3146 0.2978
0.9007 21.94 7900 3.8813 0.3191 0.2962
0.8902 22.22 8000 3.9249 0.3129 0.2953
0.8902 22.5 8100 3.9929 0.3066 0.2949
0.8902 22.78 8200 3.9557 0.3118 0.2966
0.8902 23.06 8300 4.0791 0.2933 0.2811
0.8902 23.33 8400 3.8798 0.3173 0.2949
0.8812 23.61 8500 4.0575 0.2969 0.2832
0.8812 23.89 8600 3.9538 0.3071 0.2921
0.8812 24.17 8700 4.1906 0.2817 0.2775
0.8812 24.44 8800 3.9515 0.3113 0.2941
0.8812 24.72 8900 3.8893 0.3190 0.2955
0.8781 25.0 9000 3.9491 0.3094 0.2920
0.8781 25.28 9100 3.8647 0.3171 0.2928
0.8781 25.56 9200 3.8908 0.3146 0.2994
0.8781 25.83 9300 3.9586 0.3088 0.2958
0.8781 26.11 9400 3.9277 0.3104 0.2980
0.8719 26.39 9500 3.9350 0.3097 0.2946
0.8719 26.67 9600 4.0499 0.2948 0.2890
0.8719 26.94 9700 3.9529 0.3109 0.2917
0.8719 27.22 9800 3.9768 0.3073 0.2896
0.8719 27.5 9900 3.8371 0.3239 0.3011
0.871 27.78 10000 3.9067 0.3131 0.2976
0.871 28.06 10100 3.8732 0.3183 0.2971
0.871 28.33 10200 3.9588 0.3070 0.2915
0.871 28.61 10300 3.9081 0.3143 0.2988
0.871 28.89 10400 3.8574 0.3199 0.3004
0.8673 29.17 10500 3.9120 0.3131 0.2961
0.8673 29.44 10600 3.8986 0.3147 0.2972
0.8673 29.72 10700 3.9068 0.3149 0.2967
0.8673 30.0 10800 3.9034 0.3152 0.2967

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PR-MSV-EN-EN-D2_data-en-massive_all_1_166

Finetuned
(11)
this model