haryoaw commited on
Commit
7735a7e
1 Parent(s): a3680d0

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +171 -0
  2. config.json +159 -0
  3. eval_results_ml.json +1 -0
  4. pytorch_model.bin +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - massive
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: scenario-KD-PR-MSV-EN-EN-D2_data-en-massive_all_1_166
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # scenario-KD-PR-MSV-EN-EN-D2_data-en-massive_all_1_166
20
+
21
+ This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1) on the massive dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 3.4492
24
+ - Accuracy: 0.3818
25
+ - F1: 0.3581
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 5e-05
45
+ - train_batch_size: 32
46
+ - eval_batch_size: 32
47
+ - seed: 66
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 30
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
56
+ | No log | 0.28 | 100 | 3.8981 | 0.2168 | 0.1114 |
57
+ | No log | 0.56 | 200 | 3.5590 | 0.3252 | 0.2326 |
58
+ | No log | 0.83 | 300 | 3.6191 | 0.3248 | 0.2629 |
59
+ | No log | 1.11 | 400 | 3.5005 | 0.3542 | 0.2804 |
60
+ | 2.3711 | 1.39 | 500 | 3.4728 | 0.3569 | 0.2978 |
61
+ | 2.3711 | 1.67 | 600 | 3.4235 | 0.3693 | 0.3204 |
62
+ | 2.3711 | 1.94 | 700 | 3.5368 | 0.3430 | 0.3074 |
63
+ | 2.3711 | 2.22 | 800 | 3.5023 | 0.3635 | 0.3122 |
64
+ | 2.3711 | 2.5 | 900 | 3.3525 | 0.3822 | 0.3070 |
65
+ | 1.4454 | 2.78 | 1000 | 3.6046 | 0.3420 | 0.3023 |
66
+ | 1.4454 | 3.06 | 1100 | 3.4244 | 0.3775 | 0.3410 |
67
+ | 1.4454 | 3.33 | 1200 | 3.6073 | 0.3529 | 0.3042 |
68
+ | 1.4454 | 3.61 | 1300 | 3.6553 | 0.3534 | 0.3289 |
69
+ | 1.4454 | 3.89 | 1400 | 3.6924 | 0.3411 | 0.3067 |
70
+ | 1.2035 | 4.17 | 1500 | 3.4352 | 0.3786 | 0.3192 |
71
+ | 1.2035 | 4.44 | 1600 | 3.4389 | 0.3710 | 0.3269 |
72
+ | 1.2035 | 4.72 | 1700 | 3.5966 | 0.3514 | 0.3190 |
73
+ | 1.2035 | 5.0 | 1800 | 3.5810 | 0.3547 | 0.3168 |
74
+ | 1.2035 | 5.28 | 1900 | 3.3785 | 0.3915 | 0.3424 |
75
+ | 1.0761 | 5.56 | 2000 | 3.4477 | 0.3808 | 0.3318 |
76
+ | 1.0761 | 5.83 | 2100 | 3.3579 | 0.3894 | 0.3369 |
77
+ | 1.0761 | 6.11 | 2200 | 3.8225 | 0.3286 | 0.3007 |
78
+ | 1.0761 | 6.39 | 2300 | 3.6119 | 0.3583 | 0.3126 |
79
+ | 1.0761 | 6.67 | 2400 | 3.5649 | 0.3672 | 0.3298 |
80
+ | 1.0182 | 6.94 | 2500 | 3.9692 | 0.3115 | 0.3079 |
81
+ | 1.0182 | 7.22 | 2600 | 3.8932 | 0.3314 | 0.3159 |
82
+ | 1.0182 | 7.5 | 2700 | 3.7041 | 0.3464 | 0.3302 |
83
+ | 1.0182 | 7.78 | 2800 | 3.6965 | 0.3461 | 0.3072 |
84
+ | 1.0182 | 8.06 | 2900 | 3.8919 | 0.3247 | 0.3219 |
85
+ | 0.9596 | 8.33 | 3000 | 3.8834 | 0.3147 | 0.3119 |
86
+ | 0.9596 | 8.61 | 3100 | 3.6113 | 0.3597 | 0.3412 |
87
+ | 0.9596 | 8.89 | 3200 | 3.8647 | 0.3239 | 0.3064 |
88
+ | 0.9596 | 9.17 | 3300 | 3.5087 | 0.3684 | 0.3281 |
89
+ | 0.9596 | 9.44 | 3400 | 3.7126 | 0.3427 | 0.3211 |
90
+ | 0.9317 | 9.72 | 3500 | 3.5315 | 0.3774 | 0.3439 |
91
+ | 0.9317 | 10.0 | 3600 | 3.7289 | 0.3479 | 0.3339 |
92
+ | 0.9317 | 10.28 | 3700 | 3.6699 | 0.3538 | 0.3343 |
93
+ | 0.9317 | 10.56 | 3800 | 3.4747 | 0.3796 | 0.3378 |
94
+ | 0.9317 | 10.83 | 3900 | 3.6562 | 0.3548 | 0.3186 |
95
+ | 0.91 | 11.11 | 4000 | 3.4031 | 0.3896 | 0.3478 |
96
+ | 0.91 | 11.39 | 4100 | 3.5768 | 0.3557 | 0.3296 |
97
+ | 0.91 | 11.67 | 4200 | 3.5617 | 0.3642 | 0.3370 |
98
+ | 0.91 | 11.94 | 4300 | 3.7519 | 0.3351 | 0.3163 |
99
+ | 0.91 | 12.22 | 4400 | 3.5107 | 0.3755 | 0.3402 |
100
+ | 0.892 | 12.5 | 4500 | 3.6299 | 0.3625 | 0.3322 |
101
+ | 0.892 | 12.78 | 4600 | 3.5303 | 0.3773 | 0.3394 |
102
+ | 0.892 | 13.06 | 4700 | 3.6772 | 0.3513 | 0.3279 |
103
+ | 0.892 | 13.33 | 4800 | 3.6287 | 0.3550 | 0.3322 |
104
+ | 0.892 | 13.61 | 4900 | 3.6046 | 0.3608 | 0.3363 |
105
+ | 0.8782 | 13.89 | 5000 | 3.5809 | 0.3728 | 0.3401 |
106
+ | 0.8782 | 14.17 | 5100 | 3.6615 | 0.3544 | 0.3327 |
107
+ | 0.8782 | 14.44 | 5200 | 3.4584 | 0.3782 | 0.3471 |
108
+ | 0.8782 | 14.72 | 5300 | 3.6412 | 0.3705 | 0.3456 |
109
+ | 0.8782 | 15.0 | 5400 | 3.6166 | 0.3647 | 0.3482 |
110
+ | 0.8675 | 15.28 | 5500 | 3.7989 | 0.3411 | 0.3259 |
111
+ | 0.8675 | 15.56 | 5600 | 3.5574 | 0.3703 | 0.3332 |
112
+ | 0.8675 | 15.83 | 5700 | 3.5888 | 0.3649 | 0.3332 |
113
+ | 0.8675 | 16.11 | 5800 | 3.3744 | 0.3900 | 0.3450 |
114
+ | 0.8675 | 16.39 | 5900 | 3.6122 | 0.3645 | 0.3442 |
115
+ | 0.862 | 16.67 | 6000 | 3.3953 | 0.3876 | 0.3457 |
116
+ | 0.862 | 16.94 | 6100 | 3.3995 | 0.3945 | 0.3594 |
117
+ | 0.862 | 17.22 | 6200 | 3.4168 | 0.3880 | 0.3463 |
118
+ | 0.862 | 17.5 | 6300 | 3.6119 | 0.3668 | 0.3461 |
119
+ | 0.862 | 17.78 | 6400 | 3.5063 | 0.3735 | 0.3325 |
120
+ | 0.8544 | 18.06 | 6500 | 3.6581 | 0.3539 | 0.3344 |
121
+ | 0.8544 | 18.33 | 6600 | 3.5380 | 0.3673 | 0.3352 |
122
+ | 0.8544 | 18.61 | 6700 | 3.5699 | 0.3613 | 0.3399 |
123
+ | 0.8544 | 18.89 | 6800 | 3.4977 | 0.3703 | 0.3441 |
124
+ | 0.8544 | 19.17 | 6900 | 3.5746 | 0.3664 | 0.3401 |
125
+ | 0.8494 | 19.44 | 7000 | 3.3279 | 0.4027 | 0.3671 |
126
+ | 0.8494 | 19.72 | 7100 | 3.6689 | 0.3596 | 0.3504 |
127
+ | 0.8494 | 20.0 | 7200 | 3.5632 | 0.3626 | 0.3439 |
128
+ | 0.8494 | 20.28 | 7300 | 3.5577 | 0.3693 | 0.3394 |
129
+ | 0.8494 | 20.56 | 7400 | 3.5795 | 0.3634 | 0.3458 |
130
+ | 0.8452 | 20.83 | 7500 | 3.4764 | 0.3766 | 0.3444 |
131
+ | 0.8452 | 21.11 | 7600 | 3.3944 | 0.3893 | 0.3569 |
132
+ | 0.8452 | 21.39 | 7700 | 3.4161 | 0.3913 | 0.3588 |
133
+ | 0.8452 | 21.67 | 7800 | 3.5015 | 0.3791 | 0.3527 |
134
+ | 0.8452 | 21.94 | 7900 | 3.5177 | 0.3766 | 0.3493 |
135
+ | 0.8413 | 22.22 | 8000 | 3.4390 | 0.3803 | 0.3547 |
136
+ | 0.8413 | 22.5 | 8100 | 3.4736 | 0.3765 | 0.3537 |
137
+ | 0.8413 | 22.78 | 8200 | 3.6093 | 0.3602 | 0.3438 |
138
+ | 0.8413 | 23.06 | 8300 | 3.3350 | 0.3965 | 0.3576 |
139
+ | 0.8413 | 23.33 | 8400 | 3.5186 | 0.3725 | 0.3478 |
140
+ | 0.8393 | 23.61 | 8500 | 3.4701 | 0.3836 | 0.3639 |
141
+ | 0.8393 | 23.89 | 8600 | 3.5562 | 0.3667 | 0.3485 |
142
+ | 0.8393 | 24.17 | 8700 | 3.5092 | 0.3765 | 0.3536 |
143
+ | 0.8393 | 24.44 | 8800 | 3.5955 | 0.3642 | 0.3451 |
144
+ | 0.8393 | 24.72 | 8900 | 3.5135 | 0.3728 | 0.3542 |
145
+ | 0.8363 | 25.0 | 9000 | 3.4253 | 0.3870 | 0.3583 |
146
+ | 0.8363 | 25.28 | 9100 | 3.4027 | 0.3868 | 0.3585 |
147
+ | 0.8363 | 25.56 | 9200 | 3.4741 | 0.3803 | 0.3568 |
148
+ | 0.8363 | 25.83 | 9300 | 3.4929 | 0.3790 | 0.3585 |
149
+ | 0.8363 | 26.11 | 9400 | 3.4803 | 0.3782 | 0.3549 |
150
+ | 0.8328 | 26.39 | 9500 | 3.4915 | 0.3757 | 0.3557 |
151
+ | 0.8328 | 26.67 | 9600 | 3.4388 | 0.3839 | 0.3603 |
152
+ | 0.8328 | 26.94 | 9700 | 3.5595 | 0.3679 | 0.3510 |
153
+ | 0.8328 | 27.22 | 9800 | 3.5496 | 0.3679 | 0.3530 |
154
+ | 0.8328 | 27.5 | 9900 | 3.4764 | 0.3767 | 0.3540 |
155
+ | 0.833 | 27.78 | 10000 | 3.5036 | 0.3759 | 0.3553 |
156
+ | 0.833 | 28.06 | 10100 | 3.5016 | 0.3769 | 0.3546 |
157
+ | 0.833 | 28.33 | 10200 | 3.5109 | 0.3752 | 0.3561 |
158
+ | 0.833 | 28.61 | 10300 | 3.4405 | 0.3844 | 0.3602 |
159
+ | 0.833 | 28.89 | 10400 | 3.4607 | 0.3835 | 0.3616 |
160
+ | 0.8304 | 29.17 | 10500 | 3.4678 | 0.3791 | 0.3591 |
161
+ | 0.8304 | 29.44 | 10600 | 3.4306 | 0.3858 | 0.3608 |
162
+ | 0.8304 | 29.72 | 10700 | 3.4509 | 0.3818 | 0.3604 |
163
+ | 0.8304 | 30.0 | 10800 | 3.4492 | 0.3818 | 0.3581 |
164
+
165
+
166
+ ### Framework versions
167
+
168
+ - Transformers 4.33.3
169
+ - Pytorch 2.1.1+cu121
170
+ - Datasets 2.14.5
171
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1",
3
+ "architectures": [
4
+ "DebertaForSequenceClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6",
18
+ "7": "LABEL_7",
19
+ "8": "LABEL_8",
20
+ "9": "LABEL_9",
21
+ "10": "LABEL_10",
22
+ "11": "LABEL_11",
23
+ "12": "LABEL_12",
24
+ "13": "LABEL_13",
25
+ "14": "LABEL_14",
26
+ "15": "LABEL_15",
27
+ "16": "LABEL_16",
28
+ "17": "LABEL_17",
29
+ "18": "LABEL_18",
30
+ "19": "LABEL_19",
31
+ "20": "LABEL_20",
32
+ "21": "LABEL_21",
33
+ "22": "LABEL_22",
34
+ "23": "LABEL_23",
35
+ "24": "LABEL_24",
36
+ "25": "LABEL_25",
37
+ "26": "LABEL_26",
38
+ "27": "LABEL_27",
39
+ "28": "LABEL_28",
40
+ "29": "LABEL_29",
41
+ "30": "LABEL_30",
42
+ "31": "LABEL_31",
43
+ "32": "LABEL_32",
44
+ "33": "LABEL_33",
45
+ "34": "LABEL_34",
46
+ "35": "LABEL_35",
47
+ "36": "LABEL_36",
48
+ "37": "LABEL_37",
49
+ "38": "LABEL_38",
50
+ "39": "LABEL_39",
51
+ "40": "LABEL_40",
52
+ "41": "LABEL_41",
53
+ "42": "LABEL_42",
54
+ "43": "LABEL_43",
55
+ "44": "LABEL_44",
56
+ "45": "LABEL_45",
57
+ "46": "LABEL_46",
58
+ "47": "LABEL_47",
59
+ "48": "LABEL_48",
60
+ "49": "LABEL_49",
61
+ "50": "LABEL_50",
62
+ "51": "LABEL_51",
63
+ "52": "LABEL_52",
64
+ "53": "LABEL_53",
65
+ "54": "LABEL_54",
66
+ "55": "LABEL_55",
67
+ "56": "LABEL_56",
68
+ "57": "LABEL_57",
69
+ "58": "LABEL_58",
70
+ "59": "LABEL_59"
71
+ },
72
+ "initializer_range": 0.02,
73
+ "intermediate_size": 3072,
74
+ "label2id": {
75
+ "LABEL_0": 0,
76
+ "LABEL_1": 1,
77
+ "LABEL_10": 10,
78
+ "LABEL_11": 11,
79
+ "LABEL_12": 12,
80
+ "LABEL_13": 13,
81
+ "LABEL_14": 14,
82
+ "LABEL_15": 15,
83
+ "LABEL_16": 16,
84
+ "LABEL_17": 17,
85
+ "LABEL_18": 18,
86
+ "LABEL_19": 19,
87
+ "LABEL_2": 2,
88
+ "LABEL_20": 20,
89
+ "LABEL_21": 21,
90
+ "LABEL_22": 22,
91
+ "LABEL_23": 23,
92
+ "LABEL_24": 24,
93
+ "LABEL_25": 25,
94
+ "LABEL_26": 26,
95
+ "LABEL_27": 27,
96
+ "LABEL_28": 28,
97
+ "LABEL_29": 29,
98
+ "LABEL_3": 3,
99
+ "LABEL_30": 30,
100
+ "LABEL_31": 31,
101
+ "LABEL_32": 32,
102
+ "LABEL_33": 33,
103
+ "LABEL_34": 34,
104
+ "LABEL_35": 35,
105
+ "LABEL_36": 36,
106
+ "LABEL_37": 37,
107
+ "LABEL_38": 38,
108
+ "LABEL_39": 39,
109
+ "LABEL_4": 4,
110
+ "LABEL_40": 40,
111
+ "LABEL_41": 41,
112
+ "LABEL_42": 42,
113
+ "LABEL_43": 43,
114
+ "LABEL_44": 44,
115
+ "LABEL_45": 45,
116
+ "LABEL_46": 46,
117
+ "LABEL_47": 47,
118
+ "LABEL_48": 48,
119
+ "LABEL_49": 49,
120
+ "LABEL_5": 5,
121
+ "LABEL_50": 50,
122
+ "LABEL_51": 51,
123
+ "LABEL_52": 52,
124
+ "LABEL_53": 53,
125
+ "LABEL_54": 54,
126
+ "LABEL_55": 55,
127
+ "LABEL_56": 56,
128
+ "LABEL_57": 57,
129
+ "LABEL_58": 58,
130
+ "LABEL_59": 59,
131
+ "LABEL_6": 6,
132
+ "LABEL_7": 7,
133
+ "LABEL_8": 8,
134
+ "LABEL_9": 9
135
+ },
136
+ "layer_norm_eps": 1e-07,
137
+ "max_position_embeddings": 512,
138
+ "max_relative_positions": -1,
139
+ "model_type": "deberta-v2",
140
+ "norm_rel_ebd": "layer_norm",
141
+ "num_attention_heads": 12,
142
+ "num_hidden_layers": 6,
143
+ "pad_token_id": 0,
144
+ "pooler_dropout": 0,
145
+ "pooler_hidden_act": "gelu",
146
+ "pooler_hidden_size": 768,
147
+ "pos_att_type": [
148
+ "p2c",
149
+ "c2p"
150
+ ],
151
+ "position_biased_input": false,
152
+ "position_buckets": 256,
153
+ "relative_attention": true,
154
+ "share_att_key": true,
155
+ "torch_dtype": "float32",
156
+ "transformers_version": "4.33.3",
157
+ "type_vocab_size": 0,
158
+ "vocab_size": 251000
159
+ }
eval_results_ml.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ro-RO": {"f1": 0.44728084159822185, "accuracy": 0.4979825151311365}, "mn-MN": {"f1": 0.16181517065302037, "accuracy": 0.23335574983187626}, "nl-NL": {"f1": 0.5580017050571004, "accuracy": 0.6291190316072629}, "ta-IN": {"f1": 0.24192041436277165, "accuracy": 0.3110289172831204}, "fi-FI": {"f1": 0.3039540397189301, "accuracy": 0.3705447209145931}, "sl-SL": {"f1": 0.2911377982641519, "accuracy": 0.3160726294552791}, "en-US": {"f1": 0.8548656312680967, "accuracy": 0.8678547410894418}, "sw-KE": {"f1": 0.1585793554932351, "accuracy": 0.22629455279085406}, "ru-RU": {"f1": 0.5214704503397671, "accuracy": 0.5571620712844654}, "fr-FR": {"f1": 0.5395605242887821, "accuracy": 0.5830531271015468}, "is-IS": {"f1": 0.21854740204856535, "accuracy": 0.27437794216543376}, "lv-LV": {"f1": 0.2464320025506611, "accuracy": 0.2905178211163416}, "sv-SE": {"f1": 0.5226705350785269, "accuracy": 0.5685944855413584}, "af-ZA": {"f1": 0.34389556686661377, "accuracy": 0.39273705447209145}, "te-IN": {"f1": 0.1456672115521345, "accuracy": 0.24680564895763282}, "km-KH": {"f1": 0.3385568120446022, "accuracy": 0.41156691324815065}, "pl-PL": {"f1": 0.4534626863095788, "accuracy": 0.5248823133826497}, "az-AZ": {"f1": 0.2692556222697123, "accuracy": 0.3618022864828514}, "zh-CN": {"f1": 0.5616771750448877, "accuracy": 0.5951580363147276}, "ar-SA": {"f1": 0.23266456588838905, "accuracy": 0.2965702757229321}, "it-IT": {"f1": 0.49239190438493824, "accuracy": 0.5571620712844654}, "ml-IN": {"f1": 0.2161248331664093, "accuracy": 0.3170813718897108}, "pt-PT": {"f1": 0.5160325220312328, "accuracy": 0.5790181573638198}, "cy-GB": {"f1": 0.08891605578619366, "accuracy": 0.14996637525218562}, "bn-BD": {"f1": 0.14621149495958394, "accuracy": 0.24041694687289844}, "da-DK": {"f1": 0.5641655089643771, "accuracy": 0.6042367182246133}, "vi-VN": {"f1": 0.22801923528123538, "accuracy": 0.2901815736381977}, "nb-NO": {"f1": 0.5630916939392848, "accuracy": 0.5800268997982515}, "am-ET": {"f1": 0.05770403402023623, "accuracy": 0.13012777404169468}, "kn-IN": {"f1": 0.17546739935753197, "accuracy": 0.26899798251513113}, "hy-AM": {"f1": 0.2003193735282468, "accuracy": 0.2686617350369872}, "ca-ES": {"f1": 0.39084824259720147, "accuracy": 0.42905178211163414}, "ka-GE": {"f1": 0.17697244790103894, "accuracy": 0.24579690652320108}, "id-ID": {"f1": 0.4983768578044887, "accuracy": 0.5622057834566241}, "ja-JP": {"f1": 0.5606562274383938, "accuracy": 0.625084061869536}, "ko-KR": {"f1": 0.2908405826115113, "accuracy": 0.3665097511768662}, "hu-HU": {"f1": 0.3966488929685, "accuracy": 0.47478143913920645}, "de-DE": {"f1": 0.5498721761010833, "accuracy": 0.613315400134499}, "tr-TR": {"f1": 0.4244244800842351, "accuracy": 0.4878950907868191}, "he-IL": {"f1": 0.23898112646672115, "accuracy": 0.31371889710827167}, "es-ES": {"f1": 0.5403320084623388, "accuracy": 0.5736381977135171}, "hi-IN": {"f1": 0.24413166610129447, "accuracy": 0.32683254875588436}, "sq-AL": {"f1": 0.2853267127661902, "accuracy": 0.3409549428379287}, "tl-PH": {"f1": 0.2768427418556953, "accuracy": 0.3382649630127774}, "fa-IR": {"f1": 0.3171406618053401, "accuracy": 0.4351042367182246}, "ms-MY": {"f1": 0.4020852716284141, "accuracy": 0.4512441156691325}, "el-GR": {"f1": 0.2873985005369506, "accuracy": 0.3695359784801614}, "jv-ID": {"f1": 0.21195280882108708, "accuracy": 0.269670477471419}, "my-MM": {"f1": 0.24289779795652067, "accuracy": 0.34431741761936785}, "th-TH": {"f1": 0.5352275099292152, "accuracy": 0.5716207128446537}, "ur-PK": {"f1": 0.12874537120039461, "accuracy": 0.20847343644922664}, "zh-TW": {"f1": 0.4755921971411533, "accuracy": 0.5171486213853396}, "all": {"f1": 0.37954445095259104, "accuracy": 0.41195489110754746}}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65ca44251a521b665d1c3c380b9f6c356a53ac332449d7dd47f5a25cab664898
3
+ size 946915690
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f03495226e913831ca85d0a1a8caebf85d5027a562d21e2febd85c54fdd6f956
3
+ size 4600