Edit model card

scenario-KD-SCR-MSV-EN-CL-D2_data-en-massive_all_1_166

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 306.4669
  • Accuracy: 0.0905
  • F1: 0.0439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 66
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.2778 100 627.7275 0.0646 0.0058
No log 0.5556 200 607.2649 0.0644 0.0021
No log 0.8333 300 599.7544 0.0652 0.0026
No log 1.1111 400 589.6091 0.0679 0.0051
540.5038 1.3889 500 586.3414 0.0711 0.0041
540.5038 1.6667 600 575.1269 0.0709 0.0044
540.5038 1.9444 700 567.1767 0.0660 0.0034
540.5038 2.2222 800 561.4174 0.0709 0.0039
540.5038 2.5 900 554.0192 0.0750 0.0044
428.2781 2.7778 1000 548.8307 0.0759 0.0075
428.2781 3.0556 1100 544.0135 0.0761 0.0077
428.2781 3.3333 1200 538.4531 0.0736 0.0048
428.2781 3.6111 1300 530.2228 0.0629 0.0073
428.2781 3.8889 1400 525.1834 0.0601 0.0052
372.0535 4.1667 1500 516.5657 0.0513 0.0048
372.0535 4.4444 1600 513.2379 0.0617 0.0091
372.0535 4.7222 1700 505.9874 0.0722 0.0073
372.0535 5.0 1800 497.9989 0.0610 0.0097
372.0535 5.2778 1900 495.0910 0.0616 0.0113
329.5571 5.5556 2000 491.1795 0.0638 0.0102
329.5571 5.8333 2100 486.6686 0.0745 0.0130
329.5571 6.1111 2200 481.7049 0.0653 0.0114
329.5571 6.3889 2300 475.6475 0.0650 0.0121
329.5571 6.6667 2400 470.6474 0.0615 0.0121
298.0146 6.9444 2500 469.8773 0.0749 0.0146
298.0146 7.2222 2600 462.3435 0.0728 0.0152
298.0146 7.5 2700 459.8708 0.0680 0.0149
298.0146 7.7778 2800 456.7115 0.0649 0.0151
298.0146 8.0556 2900 451.0399 0.0691 0.0176
272.1015 8.3333 3000 445.2203 0.0701 0.0178
272.1015 8.6111 3100 439.9684 0.0789 0.0201
272.1015 8.8889 3200 437.1039 0.0705 0.0193
272.1015 9.1667 3300 433.4584 0.0655 0.0184
272.1015 9.4444 3400 428.3048 0.0731 0.0208
249.4726 9.7222 3500 423.4261 0.0639 0.0178
249.4726 10.0 3600 422.1715 0.0661 0.0198
249.4726 10.2778 3700 417.5420 0.0774 0.0234
249.4726 10.5556 3800 416.0034 0.0731 0.0219
249.4726 10.8333 3900 410.5283 0.0822 0.0276
230.0448 11.1111 4000 408.2419 0.0830 0.0278
230.0448 11.3889 4100 403.9637 0.0755 0.0280
230.0448 11.6667 4200 401.9917 0.0684 0.0233
230.0448 11.9444 4300 396.8027 0.0722 0.0263
230.0448 12.2222 4400 394.9419 0.0781 0.0281
212.8543 12.5 4500 390.4717 0.0802 0.0310
212.8543 12.7778 4600 388.3587 0.0744 0.0269
212.8543 13.0556 4700 387.5984 0.0790 0.0279
212.8543 13.3333 4800 383.2326 0.0806 0.0302
212.8543 13.6111 4900 383.7005 0.0736 0.0293
198.2257 13.8889 5000 374.8887 0.0815 0.0330
198.2257 14.1667 5100 373.3404 0.0791 0.0319
198.2257 14.4444 5200 370.0199 0.0747 0.0322
198.2257 14.7222 5300 369.0208 0.0832 0.0361
198.2257 15.0 5400 366.3546 0.0830 0.0341
185.0336 15.2778 5500 363.6714 0.0860 0.0360
185.0336 15.5556 5600 361.8872 0.0843 0.0358
185.0336 15.8333 5700 357.5280 0.0748 0.0328
185.0336 16.1111 5800 358.1822 0.0844 0.0362
185.0336 16.3889 5900 354.5366 0.0848 0.0371
173.9678 16.6667 6000 352.3711 0.0820 0.0366
173.9678 16.9444 6100 350.1420 0.0840 0.0379
173.9678 17.2222 6200 346.6544 0.0862 0.0388
173.9678 17.5 6300 345.2696 0.0854 0.0376
173.9678 17.7778 6400 343.5911 0.0852 0.0379
164.343 18.0556 6500 342.2870 0.0925 0.0399
164.343 18.3333 6600 340.4440 0.0812 0.0384
164.343 18.6111 6700 337.7889 0.0839 0.0391
164.343 18.8889 6800 337.9293 0.0888 0.0387
164.343 19.1667 6900 337.0860 0.0951 0.0432
156.0394 19.4444 7000 338.8325 0.0908 0.0380
156.0394 19.7222 7100 334.3348 0.0913 0.0400
156.0394 20.0 7200 330.6484 0.0863 0.0404
156.0394 20.2778 7300 329.6674 0.0852 0.0419
156.0394 20.5556 7400 326.3730 0.0855 0.0404
149.0754 20.8333 7500 325.8025 0.0820 0.0387
149.0754 21.1111 7600 325.7752 0.0857 0.0421
149.0754 21.3889 7700 325.3289 0.0911 0.0401
149.0754 21.6667 7800 322.8049 0.0869 0.0424
149.0754 21.9444 7900 322.9578 0.0788 0.0385
143.0181 22.2222 8000 322.0035 0.0900 0.0414
143.0181 22.5 8100 320.1973 0.0922 0.0428
143.0181 22.7778 8200 318.8786 0.0887 0.0428
143.0181 23.0556 8300 318.5295 0.0928 0.0429
143.0181 23.3333 8400 316.3871 0.0894 0.0413
138.3268 23.6111 8500 317.5307 0.0890 0.0430
138.3268 23.8889 8600 317.3522 0.0902 0.0432
138.3268 24.1667 8700 316.0612 0.0869 0.0408
138.3268 24.4444 8800 314.3895 0.0875 0.0428
138.3268 24.7222 8900 311.4596 0.0913 0.0437
134.1338 25.0 9000 312.0233 0.0887 0.0416
134.1338 25.2778 9100 310.7538 0.0897 0.0439
134.1338 25.5556 9200 311.2314 0.0911 0.0435
134.1338 25.8333 9300 311.0068 0.0900 0.0414
134.1338 26.1111 9400 309.6226 0.0927 0.0438
131.2272 26.3889 9500 308.3279 0.0872 0.0423
131.2272 26.6667 9600 308.4141 0.0868 0.0428
131.2272 26.9444 9700 308.6096 0.0907 0.0433
131.2272 27.2222 9800 308.6696 0.0913 0.0421
131.2272 27.5 9900 308.0463 0.0907 0.0441
128.9031 27.7778 10000 307.7925 0.0868 0.0431
128.9031 28.0556 10100 306.5993 0.0889 0.0427
128.9031 28.3333 10200 306.2005 0.0932 0.0446
128.9031 28.6111 10300 307.4815 0.0881 0.0432
128.9031 28.8889 10400 307.0386 0.0914 0.0443
127.4595 29.1667 10500 306.5276 0.0901 0.0435
127.4595 29.4444 10600 306.6310 0.0897 0.0435
127.4595 29.7222 10700 306.8422 0.0905 0.0435
127.4595 30.0 10800 306.4669 0.0905 0.0439

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
236M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-KD-SCR-MSV-EN-CL-D2_data-en-massive_all_1_166

Finetuned
(22)
this model