scenario-KD-SCR-MSV-EN-EN-D2_data-en-massive_all_1_166
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 303.6620
- Accuracy: 0.0845
- F1: 0.0403
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 66
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.2778 | 100 | 628.3530 | 0.0645 | 0.0031 |
No log | 0.5556 | 200 | 607.2537 | 0.0645 | 0.0021 |
No log | 0.8333 | 300 | 597.3507 | 0.0644 | 0.0021 |
No log | 1.1111 | 400 | 589.9023 | 0.0646 | 0.0023 |
540.0628 | 1.3889 | 500 | 587.1896 | 0.0669 | 0.0032 |
540.0628 | 1.6667 | 600 | 574.1956 | 0.0650 | 0.0024 |
540.0628 | 1.9444 | 700 | 567.6414 | 0.0649 | 0.0024 |
540.0628 | 2.2222 | 800 | 561.3796 | 0.0673 | 0.0033 |
540.0628 | 2.5 | 900 | 553.5518 | 0.0693 | 0.0037 |
428.1685 | 2.7778 | 1000 | 547.9289 | 0.0755 | 0.0058 |
428.1685 | 3.0556 | 1100 | 543.2942 | 0.0754 | 0.0063 |
428.1685 | 3.3333 | 1200 | 537.8929 | 0.0738 | 0.0050 |
428.1685 | 3.6111 | 1300 | 530.7917 | 0.0539 | 0.0050 |
428.1685 | 3.8889 | 1400 | 523.8170 | 0.0725 | 0.0066 |
372.0595 | 4.1667 | 1500 | 515.7302 | 0.0569 | 0.0045 |
372.0595 | 4.4444 | 1600 | 512.6782 | 0.0687 | 0.0076 |
372.0595 | 4.7222 | 1700 | 504.7878 | 0.0691 | 0.0056 |
372.0595 | 5.0 | 1800 | 498.9977 | 0.0593 | 0.0068 |
372.0595 | 5.2778 | 1900 | 495.0116 | 0.0692 | 0.0093 |
329.4533 | 5.5556 | 2000 | 490.4921 | 0.0549 | 0.0073 |
329.4533 | 5.8333 | 2100 | 485.8165 | 0.0782 | 0.0108 |
329.4533 | 6.1111 | 2200 | 481.0579 | 0.0677 | 0.0110 |
329.4533 | 6.3889 | 2300 | 475.8662 | 0.0652 | 0.0119 |
329.4533 | 6.6667 | 2400 | 469.8492 | 0.0618 | 0.0107 |
297.8759 | 6.9444 | 2500 | 468.4412 | 0.0727 | 0.0132 |
297.8759 | 7.2222 | 2600 | 461.2780 | 0.0596 | 0.0120 |
297.8759 | 7.5 | 2700 | 456.7401 | 0.0662 | 0.0140 |
297.8759 | 7.7778 | 2800 | 456.5062 | 0.0587 | 0.0124 |
297.8759 | 8.0556 | 2900 | 449.0881 | 0.0583 | 0.0116 |
271.9938 | 8.3333 | 3000 | 443.4659 | 0.0651 | 0.0155 |
271.9938 | 8.6111 | 3100 | 439.0943 | 0.0768 | 0.0175 |
271.9938 | 8.8889 | 3200 | 436.8179 | 0.0738 | 0.0153 |
271.9938 | 9.1667 | 3300 | 431.4831 | 0.0666 | 0.0179 |
271.9938 | 9.4444 | 3400 | 427.3849 | 0.0659 | 0.0171 |
249.2916 | 9.7222 | 3500 | 421.9467 | 0.0588 | 0.0134 |
249.2916 | 10.0 | 3600 | 419.9226 | 0.0657 | 0.0166 |
249.2916 | 10.2778 | 3700 | 414.5518 | 0.0724 | 0.0194 |
249.2916 | 10.5556 | 3800 | 414.6526 | 0.0693 | 0.0193 |
249.2916 | 10.8333 | 3900 | 410.1772 | 0.0746 | 0.0218 |
229.8694 | 11.1111 | 4000 | 407.4032 | 0.0791 | 0.0250 |
229.8694 | 11.3889 | 4100 | 401.9918 | 0.0747 | 0.0248 |
229.8694 | 11.6667 | 4200 | 399.7811 | 0.0596 | 0.0162 |
229.8694 | 11.9444 | 4300 | 396.3000 | 0.0675 | 0.0222 |
229.8694 | 12.2222 | 4400 | 394.0766 | 0.0717 | 0.0241 |
212.7051 | 12.5 | 4500 | 389.2682 | 0.0793 | 0.0294 |
212.7051 | 12.7778 | 4600 | 387.6005 | 0.0703 | 0.0237 |
212.7051 | 13.0556 | 4700 | 385.7607 | 0.0785 | 0.0275 |
212.7051 | 13.3333 | 4800 | 380.1237 | 0.0755 | 0.0292 |
212.7051 | 13.6111 | 4900 | 380.8004 | 0.0722 | 0.0262 |
198.1273 | 13.8889 | 5000 | 373.5923 | 0.0800 | 0.0317 |
198.1273 | 14.1667 | 5100 | 373.1263 | 0.0719 | 0.0266 |
198.1273 | 14.4444 | 5200 | 368.4973 | 0.0698 | 0.0282 |
198.1273 | 14.7222 | 5300 | 368.4087 | 0.0772 | 0.0295 |
198.1273 | 15.0 | 5400 | 365.3843 | 0.0757 | 0.0300 |
184.8348 | 15.2778 | 5500 | 360.9421 | 0.0743 | 0.0309 |
184.8348 | 15.5556 | 5600 | 359.4719 | 0.0806 | 0.0339 |
184.8348 | 15.8333 | 5700 | 356.0381 | 0.0692 | 0.0283 |
184.8348 | 16.1111 | 5800 | 356.5358 | 0.0831 | 0.0342 |
184.8348 | 16.3889 | 5900 | 352.8613 | 0.0811 | 0.0353 |
173.7237 | 16.6667 | 6000 | 350.3405 | 0.0788 | 0.0340 |
173.7237 | 16.9444 | 6100 | 349.9302 | 0.0763 | 0.0306 |
173.7237 | 17.2222 | 6200 | 345.5006 | 0.0842 | 0.0378 |
173.7237 | 17.5 | 6300 | 343.7187 | 0.0778 | 0.0343 |
173.7237 | 17.7778 | 6400 | 341.6388 | 0.0785 | 0.0353 |
164.1808 | 18.0556 | 6500 | 341.8687 | 0.0866 | 0.0380 |
164.1808 | 18.3333 | 6600 | 340.1183 | 0.0843 | 0.0375 |
164.1808 | 18.6111 | 6700 | 336.7932 | 0.0833 | 0.0373 |
164.1808 | 18.8889 | 6800 | 334.5229 | 0.0811 | 0.0333 |
164.1808 | 19.1667 | 6900 | 334.8410 | 0.0896 | 0.0395 |
155.9113 | 19.4444 | 7000 | 335.9225 | 0.0834 | 0.0352 |
155.9113 | 19.7222 | 7100 | 332.2399 | 0.0832 | 0.0351 |
155.9113 | 20.0 | 7200 | 328.4766 | 0.0803 | 0.0355 |
155.9113 | 20.2778 | 7300 | 327.9207 | 0.0840 | 0.0400 |
155.9113 | 20.5556 | 7400 | 325.6150 | 0.0813 | 0.0379 |
148.9894 | 20.8333 | 7500 | 324.3223 | 0.0796 | 0.0358 |
148.9894 | 21.1111 | 7600 | 323.8501 | 0.0803 | 0.0368 |
148.9894 | 21.3889 | 7700 | 322.7423 | 0.0847 | 0.0392 |
148.9894 | 21.6667 | 7800 | 321.7413 | 0.0833 | 0.0383 |
148.9894 | 21.9444 | 7900 | 320.6828 | 0.0767 | 0.0358 |
142.9619 | 22.2222 | 8000 | 319.8029 | 0.0842 | 0.0370 |
142.9619 | 22.5 | 8100 | 317.4704 | 0.0889 | 0.0417 |
142.9619 | 22.7778 | 8200 | 316.1092 | 0.0840 | 0.0392 |
142.9619 | 23.0556 | 8300 | 316.0903 | 0.0871 | 0.0410 |
142.9619 | 23.3333 | 8400 | 314.5365 | 0.0826 | 0.0383 |
138.3276 | 23.6111 | 8500 | 313.4515 | 0.0823 | 0.0390 |
138.3276 | 23.8889 | 8600 | 313.9167 | 0.0850 | 0.0398 |
138.3276 | 24.1667 | 8700 | 312.8665 | 0.0815 | 0.0384 |
138.3276 | 24.4444 | 8800 | 310.8644 | 0.0819 | 0.0387 |
138.3276 | 24.7222 | 8900 | 310.7165 | 0.0846 | 0.0396 |
134.11 | 25.0 | 9000 | 311.4012 | 0.0880 | 0.0399 |
134.11 | 25.2778 | 9100 | 308.5638 | 0.0852 | 0.0401 |
134.11 | 25.5556 | 9200 | 308.5912 | 0.0843 | 0.0405 |
134.11 | 25.8333 | 9300 | 308.6916 | 0.0855 | 0.0399 |
134.11 | 26.1111 | 9400 | 307.4913 | 0.0872 | 0.0421 |
131.1968 | 26.3889 | 9500 | 306.1313 | 0.0825 | 0.0393 |
131.1968 | 26.6667 | 9600 | 306.2299 | 0.0806 | 0.0384 |
131.1968 | 26.9444 | 9700 | 306.1326 | 0.0842 | 0.0398 |
131.1968 | 27.2222 | 9800 | 305.8682 | 0.0856 | 0.0398 |
131.1968 | 27.5 | 9900 | 305.3973 | 0.0826 | 0.0398 |
128.8904 | 27.7778 | 10000 | 305.0905 | 0.0816 | 0.0392 |
128.8904 | 28.0556 | 10100 | 304.0052 | 0.0828 | 0.0394 |
128.8904 | 28.3333 | 10200 | 303.5638 | 0.0855 | 0.0413 |
128.8904 | 28.6111 | 10300 | 304.2411 | 0.0830 | 0.0395 |
128.8904 | 28.8889 | 10400 | 303.9249 | 0.0842 | 0.0398 |
127.4357 | 29.1667 | 10500 | 304.0102 | 0.0833 | 0.0392 |
127.4357 | 29.4444 | 10600 | 304.0796 | 0.0842 | 0.0406 |
127.4357 | 29.7222 | 10700 | 303.9043 | 0.0846 | 0.0403 |
127.4357 | 30.0 | 10800 | 303.6620 | 0.0845 | 0.0403 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for haryoaw/scenario-KD-SCR-MSV-EN-EN-D2_data-en-massive_all_1_166
Base model
microsoft/mdeberta-v3-base
Finetuned
haryoaw/scenario-MDBT-TCR-MSV-EN