Edit model card

scenario-KD-SCR-MSV-EN-EN-D2_data-en-massive_all_1_166

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 303.6620
  • Accuracy: 0.0845
  • F1: 0.0403

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 66
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.2778 100 628.3530 0.0645 0.0031
No log 0.5556 200 607.2537 0.0645 0.0021
No log 0.8333 300 597.3507 0.0644 0.0021
No log 1.1111 400 589.9023 0.0646 0.0023
540.0628 1.3889 500 587.1896 0.0669 0.0032
540.0628 1.6667 600 574.1956 0.0650 0.0024
540.0628 1.9444 700 567.6414 0.0649 0.0024
540.0628 2.2222 800 561.3796 0.0673 0.0033
540.0628 2.5 900 553.5518 0.0693 0.0037
428.1685 2.7778 1000 547.9289 0.0755 0.0058
428.1685 3.0556 1100 543.2942 0.0754 0.0063
428.1685 3.3333 1200 537.8929 0.0738 0.0050
428.1685 3.6111 1300 530.7917 0.0539 0.0050
428.1685 3.8889 1400 523.8170 0.0725 0.0066
372.0595 4.1667 1500 515.7302 0.0569 0.0045
372.0595 4.4444 1600 512.6782 0.0687 0.0076
372.0595 4.7222 1700 504.7878 0.0691 0.0056
372.0595 5.0 1800 498.9977 0.0593 0.0068
372.0595 5.2778 1900 495.0116 0.0692 0.0093
329.4533 5.5556 2000 490.4921 0.0549 0.0073
329.4533 5.8333 2100 485.8165 0.0782 0.0108
329.4533 6.1111 2200 481.0579 0.0677 0.0110
329.4533 6.3889 2300 475.8662 0.0652 0.0119
329.4533 6.6667 2400 469.8492 0.0618 0.0107
297.8759 6.9444 2500 468.4412 0.0727 0.0132
297.8759 7.2222 2600 461.2780 0.0596 0.0120
297.8759 7.5 2700 456.7401 0.0662 0.0140
297.8759 7.7778 2800 456.5062 0.0587 0.0124
297.8759 8.0556 2900 449.0881 0.0583 0.0116
271.9938 8.3333 3000 443.4659 0.0651 0.0155
271.9938 8.6111 3100 439.0943 0.0768 0.0175
271.9938 8.8889 3200 436.8179 0.0738 0.0153
271.9938 9.1667 3300 431.4831 0.0666 0.0179
271.9938 9.4444 3400 427.3849 0.0659 0.0171
249.2916 9.7222 3500 421.9467 0.0588 0.0134
249.2916 10.0 3600 419.9226 0.0657 0.0166
249.2916 10.2778 3700 414.5518 0.0724 0.0194
249.2916 10.5556 3800 414.6526 0.0693 0.0193
249.2916 10.8333 3900 410.1772 0.0746 0.0218
229.8694 11.1111 4000 407.4032 0.0791 0.0250
229.8694 11.3889 4100 401.9918 0.0747 0.0248
229.8694 11.6667 4200 399.7811 0.0596 0.0162
229.8694 11.9444 4300 396.3000 0.0675 0.0222
229.8694 12.2222 4400 394.0766 0.0717 0.0241
212.7051 12.5 4500 389.2682 0.0793 0.0294
212.7051 12.7778 4600 387.6005 0.0703 0.0237
212.7051 13.0556 4700 385.7607 0.0785 0.0275
212.7051 13.3333 4800 380.1237 0.0755 0.0292
212.7051 13.6111 4900 380.8004 0.0722 0.0262
198.1273 13.8889 5000 373.5923 0.0800 0.0317
198.1273 14.1667 5100 373.1263 0.0719 0.0266
198.1273 14.4444 5200 368.4973 0.0698 0.0282
198.1273 14.7222 5300 368.4087 0.0772 0.0295
198.1273 15.0 5400 365.3843 0.0757 0.0300
184.8348 15.2778 5500 360.9421 0.0743 0.0309
184.8348 15.5556 5600 359.4719 0.0806 0.0339
184.8348 15.8333 5700 356.0381 0.0692 0.0283
184.8348 16.1111 5800 356.5358 0.0831 0.0342
184.8348 16.3889 5900 352.8613 0.0811 0.0353
173.7237 16.6667 6000 350.3405 0.0788 0.0340
173.7237 16.9444 6100 349.9302 0.0763 0.0306
173.7237 17.2222 6200 345.5006 0.0842 0.0378
173.7237 17.5 6300 343.7187 0.0778 0.0343
173.7237 17.7778 6400 341.6388 0.0785 0.0353
164.1808 18.0556 6500 341.8687 0.0866 0.0380
164.1808 18.3333 6600 340.1183 0.0843 0.0375
164.1808 18.6111 6700 336.7932 0.0833 0.0373
164.1808 18.8889 6800 334.5229 0.0811 0.0333
164.1808 19.1667 6900 334.8410 0.0896 0.0395
155.9113 19.4444 7000 335.9225 0.0834 0.0352
155.9113 19.7222 7100 332.2399 0.0832 0.0351
155.9113 20.0 7200 328.4766 0.0803 0.0355
155.9113 20.2778 7300 327.9207 0.0840 0.0400
155.9113 20.5556 7400 325.6150 0.0813 0.0379
148.9894 20.8333 7500 324.3223 0.0796 0.0358
148.9894 21.1111 7600 323.8501 0.0803 0.0368
148.9894 21.3889 7700 322.7423 0.0847 0.0392
148.9894 21.6667 7800 321.7413 0.0833 0.0383
148.9894 21.9444 7900 320.6828 0.0767 0.0358
142.9619 22.2222 8000 319.8029 0.0842 0.0370
142.9619 22.5 8100 317.4704 0.0889 0.0417
142.9619 22.7778 8200 316.1092 0.0840 0.0392
142.9619 23.0556 8300 316.0903 0.0871 0.0410
142.9619 23.3333 8400 314.5365 0.0826 0.0383
138.3276 23.6111 8500 313.4515 0.0823 0.0390
138.3276 23.8889 8600 313.9167 0.0850 0.0398
138.3276 24.1667 8700 312.8665 0.0815 0.0384
138.3276 24.4444 8800 310.8644 0.0819 0.0387
138.3276 24.7222 8900 310.7165 0.0846 0.0396
134.11 25.0 9000 311.4012 0.0880 0.0399
134.11 25.2778 9100 308.5638 0.0852 0.0401
134.11 25.5556 9200 308.5912 0.0843 0.0405
134.11 25.8333 9300 308.6916 0.0855 0.0399
134.11 26.1111 9400 307.4913 0.0872 0.0421
131.1968 26.3889 9500 306.1313 0.0825 0.0393
131.1968 26.6667 9600 306.2299 0.0806 0.0384
131.1968 26.9444 9700 306.1326 0.0842 0.0398
131.1968 27.2222 9800 305.8682 0.0856 0.0398
131.1968 27.5 9900 305.3973 0.0826 0.0398
128.8904 27.7778 10000 305.0905 0.0816 0.0392
128.8904 28.0556 10100 304.0052 0.0828 0.0394
128.8904 28.3333 10200 303.5638 0.0855 0.0413
128.8904 28.6111 10300 304.2411 0.0830 0.0395
128.8904 28.8889 10400 303.9249 0.0842 0.0398
127.4357 29.1667 10500 304.0102 0.0833 0.0392
127.4357 29.4444 10600 304.0796 0.0842 0.0406
127.4357 29.7222 10700 303.9043 0.0846 0.0403
127.4357 30.0 10800 303.6620 0.0845 0.0403

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
236M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-KD-SCR-MSV-EN-EN-D2_data-en-massive_all_1_166

Finetuned
(11)
this model