|
--- |
|
license: mit |
|
base_model: microsoft/mdeberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- massive |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: scenario-MDBT-TCR_data-cl-massive_all_1_1 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: massive |
|
type: massive |
|
config: all_1.1 |
|
split: validation |
|
args: all_1.1 |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7999125539705962 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7608456488954072 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scenario-MDBT-TCR_data-cl-massive_all_1_1 |
|
|
|
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the massive dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3792 |
|
- Accuracy: 0.7999 |
|
- F1: 0.7608 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 66 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| |
|
| 0.4658 | 0.56 | 5000 | 0.9703 | 0.7825 | 0.7290 | |
|
| 0.2748 | 1.11 | 10000 | 0.9829 | 0.7934 | 0.7386 | |
|
| 0.237 | 1.67 | 15000 | 1.0459 | 0.7881 | 0.7348 | |
|
| 0.1545 | 2.22 | 20000 | 1.1641 | 0.7920 | 0.7544 | |
|
| 0.1482 | 2.78 | 25000 | 1.1840 | 0.7951 | 0.7528 | |
|
| 0.1076 | 3.33 | 30000 | 1.2621 | 0.7933 | 0.7504 | |
|
| 0.0974 | 3.89 | 35000 | 1.3127 | 0.7972 | 0.7566 | |
|
| 0.0654 | 4.45 | 40000 | 1.3792 | 0.7999 | 0.7608 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|