|
--- |
|
base_model: haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only |
|
library_name: transformers |
|
license: mit |
|
metrics: |
|
- accuracy |
|
- f1 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: scenario-NON-KD-PO-COPY-CDF-EN-D2_data-en-cardiff_eng_only55 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scenario-NON-KD-PO-COPY-CDF-EN-D2_data-en-cardiff_eng_only55 |
|
|
|
This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5.0783 |
|
- Accuracy: 0.4696 |
|
- F1: 0.4675 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 55 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 1.7241 | 100 | 1.2348 | 0.4608 | 0.4572 | |
|
| No log | 3.4483 | 200 | 1.4918 | 0.4828 | 0.4811 | |
|
| No log | 5.1724 | 300 | 1.6208 | 0.4890 | 0.4892 | |
|
| No log | 6.8966 | 400 | 2.2442 | 0.4757 | 0.4744 | |
|
| 0.5368 | 8.6207 | 500 | 2.8887 | 0.4828 | 0.4780 | |
|
| 0.5368 | 10.3448 | 600 | 3.2901 | 0.4643 | 0.4608 | |
|
| 0.5368 | 12.0690 | 700 | 3.5079 | 0.4630 | 0.4577 | |
|
| 0.5368 | 13.7931 | 800 | 3.9045 | 0.4771 | 0.4771 | |
|
| 0.5368 | 15.5172 | 900 | 4.0691 | 0.4586 | 0.4537 | |
|
| 0.0674 | 17.2414 | 1000 | 4.3815 | 0.4718 | 0.4709 | |
|
| 0.0674 | 18.9655 | 1100 | 4.5190 | 0.4674 | 0.4660 | |
|
| 0.0674 | 20.6897 | 1200 | 4.7439 | 0.4656 | 0.4637 | |
|
| 0.0674 | 22.4138 | 1300 | 4.9470 | 0.4678 | 0.4650 | |
|
| 0.0674 | 24.1379 | 1400 | 4.9131 | 0.4727 | 0.4725 | |
|
| 0.0123 | 25.8621 | 1500 | 4.9607 | 0.4793 | 0.4788 | |
|
| 0.0123 | 27.5862 | 1600 | 4.9727 | 0.4784 | 0.4783 | |
|
| 0.0123 | 29.3103 | 1700 | 5.0783 | 0.4696 | 0.4675 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.19.1 |
|
|