haryoaw's picture
Upload tokenizer
8fbb95c verified
metadata
base_model: microsoft/mdeberta-v3-base
library_name: transformers
license: mit
metrics:
  - accuracy
  - f1
tags:
  - generated_from_trainer
model-index:
  - name: scenario-NON-KD-PR-COPY-CDF-EN-D2_data-en-cardiff_eng_only44
    results: []

scenario-NON-KD-PR-COPY-CDF-EN-D2_data-en-cardiff_eng_only44

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.1657
  • Accuracy: 0.4577
  • F1: 0.4543

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 44
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.7241 100 1.1068 0.4330 0.3826
No log 3.4483 200 1.4495 0.4533 0.4238
No log 5.1724 300 1.5295 0.4586 0.4497
No log 6.8966 400 2.0122 0.4537 0.4516
0.5768 8.6207 500 3.0885 0.4493 0.4417
0.5768 10.3448 600 3.3878 0.4541 0.4497
0.5768 12.0690 700 3.4115 0.4586 0.4564
0.5768 13.7931 800 3.8779 0.4590 0.4572
0.5768 15.5172 900 4.1514 0.4590 0.4579
0.0737 17.2414 1000 4.6699 0.4462 0.4281
0.0737 18.9655 1100 4.6724 0.4608 0.4612
0.0737 20.6897 1200 4.6790 0.4603 0.4562
0.0737 22.4138 1300 4.9305 0.4581 0.4564
0.0737 24.1379 1400 5.0621 0.4568 0.4503
0.0099 25.8621 1500 5.0787 0.4608 0.4574
0.0099 27.5862 1600 5.1428 0.4581 0.4549
0.0099 29.3103 1700 5.1657 0.4577 0.4543

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1