Edit model card

scenario-NON-KD-SCR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:

  • Loss: 6.8615
  • Accuracy: 0.4904
  • F1: 0.4901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.0475 1.0870 500 1.0371 0.4985 0.4949
0.7462 2.1739 1000 1.2759 0.5123 0.5122
0.421 3.2609 1500 1.6791 0.5139 0.5126
0.2321 4.3478 2000 2.1227 0.4946 0.4940
0.1534 5.4348 2500 2.4070 0.4958 0.4966
0.0987 6.5217 3000 2.8761 0.4904 0.4900
0.0734 7.6087 3500 2.8613 0.4911 0.4881
0.0697 8.6957 4000 3.5593 0.4969 0.4932
0.0586 9.7826 4500 3.4005 0.4900 0.4883
0.0462 10.8696 5000 3.6698 0.4861 0.4866
0.0321 11.9565 5500 4.1118 0.4877 0.4883
0.0267 13.0435 6000 4.1028 0.4965 0.4959
0.0257 14.1304 6500 4.3167 0.4842 0.4815
0.0185 15.2174 7000 4.3273 0.4923 0.4876
0.0178 16.3043 7500 4.7543 0.4958 0.4959
0.0149 17.3913 8000 4.3035 0.4927 0.4929
0.0125 18.4783 8500 4.5842 0.4904 0.4884
0.0116 19.5652 9000 5.3172 0.4853 0.4833
0.0114 20.6522 9500 4.8280 0.4857 0.4825
0.0036 21.7391 10000 5.6275 0.4850 0.4820
0.0094 22.8261 10500 5.1559 0.4842 0.4815
0.0054 23.9130 11000 5.3889 0.4846 0.4826
0.0085 25.0 11500 4.8587 0.4888 0.4861
0.0068 26.0870 12000 5.3553 0.4896 0.4881
0.0054 27.1739 12500 5.3446 0.4853 0.4845
0.0042 28.2609 13000 5.3437 0.4838 0.4832
0.003 29.3478 13500 5.9054 0.4796 0.4784
0.0032 30.4348 14000 5.7871 0.4884 0.4881
0.0038 31.5217 14500 5.9122 0.4803 0.4787
0.0041 32.6087 15000 5.4601 0.4834 0.4786
0.0025 33.6957 15500 5.1979 0.4884 0.4853
0.0018 34.7826 16000 5.5286 0.4896 0.4869
0.0006 35.8696 16500 5.7718 0.4877 0.4859
0.0015 36.9565 17000 6.0193 0.4834 0.4832
0.0003 38.0435 17500 6.2210 0.4838 0.4828
0.0004 39.1304 18000 6.3234 0.4880 0.4879
0.0002 40.2174 18500 6.3829 0.4888 0.4885
0.0001 41.3043 19000 6.5514 0.4892 0.4889
0.0001 42.3913 19500 6.6261 0.4892 0.4891
0.0003 43.4783 20000 6.6971 0.4861 0.4849
0.0013 44.5652 20500 6.7077 0.4865 0.4849
0.0001 45.6522 21000 6.7350 0.4911 0.4903
0.0001 46.7391 21500 6.7889 0.4896 0.4888
0.0002 47.8261 22000 6.8318 0.4900 0.4902
0.0006 48.9130 22500 6.8526 0.4904 0.4901
0.0001 50.0 23000 6.8615 0.4904 0.4901

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
236M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for haryoaw/scenario-NON-KD-SCR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual

Finetuned
(204)
this model

Evaluation results