haryoaw's picture
Upload tokenizer
46ac70c verified
---
base_model: microsoft/mdeberta-v3-base
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-pre-ner-full-mdeberta_data-univner_en55
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-kd-pre-ner-full-mdeberta_data-univner_en55
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 62.9050
- Precision: 0.7596
- Recall: 0.7360
- F1: 0.7476
- Accuracy: 0.9801
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 55
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 148.0892 | 1.2755 | 500 | 103.3325 | 0.3059 | 0.2578 | 0.2798 | 0.9556 |
| 87.0932 | 2.5510 | 1000 | 80.2722 | 0.6704 | 0.6739 | 0.6722 | 0.9755 |
| 72.3221 | 3.8265 | 1500 | 72.3381 | 0.7265 | 0.7039 | 0.7150 | 0.9775 |
| 65.7687 | 5.1020 | 2000 | 68.3339 | 0.7549 | 0.7174 | 0.7357 | 0.9783 |
| 61.9669 | 6.3776 | 2500 | 65.6428 | 0.7442 | 0.7319 | 0.7380 | 0.9789 |
| 59.6427 | 7.6531 | 3000 | 64.0535 | 0.7581 | 0.7267 | 0.7421 | 0.9798 |
| 58.1252 | 8.9286 | 3500 | 62.9050 | 0.7596 | 0.7360 | 0.7476 | 0.9801 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1