|
--- |
|
base_model: microsoft/mdeberta-v3-base |
|
library_name: transformers |
|
license: mit |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: scenario-kd-pre-ner-full-mdeberta_data-univner_en55 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scenario-kd-pre-ner-full-mdeberta_data-univner_en55 |
|
|
|
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 62.9050 |
|
- Precision: 0.7596 |
|
- Recall: 0.7360 |
|
- F1: 0.7476 |
|
- Accuracy: 0.9801 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 32 |
|
- seed: 55 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 148.0892 | 1.2755 | 500 | 103.3325 | 0.3059 | 0.2578 | 0.2798 | 0.9556 | |
|
| 87.0932 | 2.5510 | 1000 | 80.2722 | 0.6704 | 0.6739 | 0.6722 | 0.9755 | |
|
| 72.3221 | 3.8265 | 1500 | 72.3381 | 0.7265 | 0.7039 | 0.7150 | 0.9775 | |
|
| 65.7687 | 5.1020 | 2000 | 68.3339 | 0.7549 | 0.7174 | 0.7357 | 0.9783 | |
|
| 61.9669 | 6.3776 | 2500 | 65.6428 | 0.7442 | 0.7319 | 0.7380 | 0.9789 | |
|
| 59.6427 | 7.6531 | 3000 | 64.0535 | 0.7581 | 0.7267 | 0.7421 | 0.9798 | |
|
| 58.1252 | 8.9286 | 3500 | 62.9050 | 0.7596 | 0.7360 | 0.7476 | 0.9801 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.19.1 |
|
|