scenario-kd-pre-ner-full-mdeberta_data-univner_full55
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 46.7361
- Precision: 0.8159
- Recall: 0.8270
- F1: 0.8214
- Accuracy: 0.9820
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 55
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
152.0575 | 0.2911 | 500 | 111.6819 | 0.2800 | 0.0814 | 0.1261 | 0.9323 |
101.0937 | 0.5822 | 1000 | 93.6121 | 0.7508 | 0.5637 | 0.6439 | 0.9650 |
89.9589 | 0.8732 | 1500 | 86.3988 | 0.7477 | 0.7279 | 0.7377 | 0.9744 |
83.7555 | 1.1643 | 2000 | 81.5901 | 0.8025 | 0.7064 | 0.7514 | 0.9753 |
78.7764 | 1.4554 | 2500 | 77.3559 | 0.7740 | 0.7852 | 0.7795 | 0.9787 |
75.052 | 1.7465 | 3000 | 74.0454 | 0.7888 | 0.7958 | 0.7923 | 0.9795 |
71.8558 | 2.0375 | 3500 | 71.2511 | 0.8026 | 0.7785 | 0.7904 | 0.9795 |
68.6774 | 2.3286 | 4000 | 68.6385 | 0.7945 | 0.7976 | 0.7960 | 0.9799 |
66.1585 | 2.6197 | 4500 | 66.3761 | 0.8064 | 0.7911 | 0.7987 | 0.9800 |
64.1799 | 2.9108 | 5000 | 64.3746 | 0.8086 | 0.8038 | 0.8062 | 0.9805 |
61.921 | 3.2019 | 5500 | 62.3790 | 0.8003 | 0.8113 | 0.8058 | 0.9806 |
60.0217 | 3.4929 | 6000 | 60.7116 | 0.8101 | 0.8124 | 0.8113 | 0.9810 |
58.3481 | 3.7840 | 6500 | 59.3713 | 0.8109 | 0.8173 | 0.8141 | 0.9812 |
57.0197 | 4.0751 | 7000 | 57.8634 | 0.8097 | 0.8147 | 0.8122 | 0.9810 |
55.4761 | 4.3662 | 7500 | 56.6438 | 0.8111 | 0.8142 | 0.8126 | 0.9810 |
54.2509 | 4.6573 | 8000 | 55.5117 | 0.8185 | 0.8150 | 0.8167 | 0.9812 |
53.179 | 4.9483 | 8500 | 54.4697 | 0.8090 | 0.8166 | 0.8128 | 0.9814 |
52.0052 | 5.2394 | 9000 | 53.5329 | 0.8134 | 0.8224 | 0.8178 | 0.9812 |
51.025 | 5.5305 | 9500 | 52.6787 | 0.8205 | 0.8179 | 0.8192 | 0.9816 |
50.2537 | 5.8216 | 10000 | 51.7982 | 0.8124 | 0.8227 | 0.8175 | 0.9815 |
49.562 | 6.1126 | 10500 | 51.1222 | 0.8153 | 0.8227 | 0.8190 | 0.9814 |
48.6986 | 6.4037 | 11000 | 50.3991 | 0.8198 | 0.8321 | 0.8259 | 0.9820 |
48.0743 | 6.6948 | 11500 | 49.9026 | 0.8108 | 0.8273 | 0.8190 | 0.9814 |
47.4624 | 6.9859 | 12000 | 49.2992 | 0.8227 | 0.8257 | 0.8242 | 0.9822 |
46.8068 | 7.2770 | 12500 | 48.7934 | 0.8200 | 0.8339 | 0.8269 | 0.9819 |
46.4058 | 7.5680 | 13000 | 48.3805 | 0.8159 | 0.8272 | 0.8215 | 0.9818 |
46.0154 | 7.8591 | 13500 | 48.0425 | 0.8188 | 0.8189 | 0.8189 | 0.9814 |
45.6997 | 8.1502 | 14000 | 47.7079 | 0.8146 | 0.8240 | 0.8193 | 0.9814 |
45.3236 | 8.4413 | 14500 | 47.3817 | 0.8239 | 0.8241 | 0.8240 | 0.9821 |
45.0217 | 8.7324 | 15000 | 47.1403 | 0.8237 | 0.8299 | 0.8268 | 0.9820 |
44.7989 | 9.0234 | 15500 | 46.9718 | 0.8174 | 0.8228 | 0.8201 | 0.9818 |
44.6325 | 9.3145 | 16000 | 46.8718 | 0.8192 | 0.8237 | 0.8214 | 0.9816 |
44.5013 | 9.6056 | 16500 | 46.7607 | 0.8217 | 0.8263 | 0.8240 | 0.9820 |
44.4881 | 9.8967 | 17000 | 46.7361 | 0.8159 | 0.8270 | 0.8214 | 0.9820 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for haryoaw/scenario-kd-pre-ner-full-mdeberta_data-univner_full55
Base model
microsoft/mdeberta-v3-base