Edit model card

scenario-kd-pre-ner-half-mdeberta_data-univner_full66

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 72.6935
  • Precision: 0.6796
  • Recall: 0.6181
  • F1: 0.6474
  • Accuracy: 0.9659

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 66
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
174.1041 0.29 500 134.2922 0.0 0.0 0.0 0.9241
125.5123 0.58 1000 119.1368 0.0 0.0 0.0 0.9241
112.735 0.87 1500 108.9108 0.0290 0.0003 0.0006 0.9243
103.9781 1.16 2000 100.5534 0.2224 0.0876 0.1257 0.9312
96.6859 1.46 2500 95.6493 0.2821 0.1262 0.1744 0.9343
92.331 1.75 3000 90.4952 0.4293 0.2782 0.3376 0.9430
88.0821 2.04 3500 87.3770 0.5074 0.3334 0.4024 0.9472
84.7183 2.33 4000 84.8580 0.5047 0.4222 0.4597 0.9513
82.5316 2.62 4500 83.2307 0.5728 0.3926 0.4659 0.9517
80.8193 2.91 5000 81.3109 0.5713 0.4522 0.5048 0.9550
78.7442 3.2 5500 80.1857 0.5653 0.5155 0.5392 0.9577
77.6656 3.49 6000 79.3523 0.5833 0.5346 0.5579 0.9588
76.4846 3.78 6500 78.3908 0.6190 0.5148 0.5621 0.9587
75.9335 4.08 7000 77.5087 0.6213 0.5347 0.5748 0.9602
74.7006 4.37 7500 77.0236 0.6098 0.5647 0.5864 0.9607
74.0752 4.66 8000 76.5373 0.6282 0.5696 0.5975 0.9615
73.8701 4.95 8500 75.8483 0.6267 0.5887 0.6071 0.9629
73.1911 5.24 9000 75.4438 0.6511 0.5876 0.6177 0.9637
72.5251 5.53 9500 75.0009 0.6443 0.5826 0.6119 0.9632
71.9142 5.82 10000 74.7027 0.6427 0.6166 0.6294 0.9642
71.6262 6.11 10500 74.3620 0.6683 0.5985 0.6315 0.9642
71.2638 6.4 11000 74.2337 0.6808 0.5713 0.6213 0.9640
71.1012 6.69 11500 73.8078 0.6718 0.6166 0.6430 0.9651
70.8483 6.99 12000 73.6011 0.6728 0.6014 0.6351 0.9651
70.5965 7.28 12500 73.5710 0.6875 0.5869 0.6333 0.9649
70.2581 7.57 13000 73.3481 0.6653 0.6270 0.6456 0.9663
70.0625 7.86 13500 73.2402 0.6830 0.5982 0.6378 0.9652
69.9168 8.15 14000 73.1845 0.6806 0.6116 0.6443 0.9655
69.7048 8.44 14500 72.9083 0.6836 0.6156 0.6478 0.9657
69.5969 8.73 15000 72.7066 0.6783 0.6234 0.6497 0.9661
69.3262 9.02 15500 72.7057 0.6733 0.6218 0.6466 0.9658
69.3689 9.31 16000 72.6039 0.6847 0.6198 0.6507 0.9663
69.3319 9.61 16500 72.6736 0.6825 0.6247 0.6524 0.9661
69.2166 9.9 17000 72.6935 0.6796 0.6181 0.6474 0.9659

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-kd-pre-ner-half-mdeberta_data-univner_full66

Finetuned
(204)
this model