scenario-non-kd-pre-ner-full-mdeberta_data-univner_full44
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1878
- Precision: 0.7925
- Recall: 0.8189
- F1: 0.8055
- Accuracy: 0.9794
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2646 | 0.2910 | 500 | 0.1977 | 0.3184 | 0.2992 | 0.3085 | 0.9376 |
0.1629 | 0.5821 | 1000 | 0.1272 | 0.5005 | 0.6191 | 0.5535 | 0.9577 |
0.1027 | 0.8731 | 1500 | 0.1002 | 0.6168 | 0.7074 | 0.6590 | 0.9672 |
0.0757 | 1.1641 | 2000 | 0.1021 | 0.6325 | 0.7381 | 0.6813 | 0.9688 |
0.0645 | 1.4552 | 2500 | 0.0843 | 0.7217 | 0.7640 | 0.7422 | 0.9748 |
0.0593 | 1.7462 | 3000 | 0.0784 | 0.7325 | 0.7780 | 0.7545 | 0.9754 |
0.0521 | 2.0373 | 3500 | 0.0892 | 0.7262 | 0.7931 | 0.7582 | 0.9754 |
0.0411 | 2.3283 | 4000 | 0.0822 | 0.7397 | 0.8100 | 0.7732 | 0.9768 |
0.0378 | 2.6193 | 4500 | 0.0854 | 0.7364 | 0.8207 | 0.7763 | 0.9772 |
0.0366 | 2.9104 | 5000 | 0.0826 | 0.7439 | 0.8160 | 0.7783 | 0.9771 |
0.0284 | 3.2014 | 5500 | 0.0916 | 0.7535 | 0.7964 | 0.7744 | 0.9772 |
0.0254 | 3.4924 | 6000 | 0.0912 | 0.7575 | 0.7992 | 0.7778 | 0.9776 |
0.0253 | 3.7835 | 6500 | 0.0901 | 0.7733 | 0.8107 | 0.7916 | 0.9787 |
0.0236 | 4.0745 | 7000 | 0.1009 | 0.7784 | 0.7986 | 0.7883 | 0.9784 |
0.0187 | 4.3655 | 7500 | 0.1032 | 0.7917 | 0.8045 | 0.7981 | 0.9789 |
0.019 | 4.6566 | 8000 | 0.1002 | 0.7507 | 0.8211 | 0.7843 | 0.9776 |
0.0179 | 4.9476 | 8500 | 0.1002 | 0.7706 | 0.8084 | 0.7890 | 0.9784 |
0.0137 | 5.2386 | 9000 | 0.1091 | 0.7527 | 0.8173 | 0.7837 | 0.9773 |
0.0134 | 5.5297 | 9500 | 0.1038 | 0.7727 | 0.8160 | 0.7938 | 0.9783 |
0.014 | 5.8207 | 10000 | 0.1148 | 0.7595 | 0.8120 | 0.7849 | 0.9778 |
0.0129 | 6.1118 | 10500 | 0.1148 | 0.7657 | 0.8198 | 0.7918 | 0.9780 |
0.0106 | 6.4028 | 11000 | 0.1178 | 0.7671 | 0.8185 | 0.7920 | 0.9779 |
0.0099 | 6.6938 | 11500 | 0.1092 | 0.7758 | 0.8159 | 0.7954 | 0.9785 |
0.0102 | 6.9849 | 12000 | 0.1170 | 0.7681 | 0.8156 | 0.7911 | 0.9775 |
0.0079 | 7.2759 | 12500 | 0.1235 | 0.7589 | 0.8280 | 0.7920 | 0.9775 |
0.0083 | 7.5669 | 13000 | 0.1117 | 0.7696 | 0.8218 | 0.7949 | 0.9781 |
0.0082 | 7.8580 | 13500 | 0.1184 | 0.7821 | 0.8065 | 0.7941 | 0.9786 |
0.007 | 8.1490 | 14000 | 0.1194 | 0.7916 | 0.8039 | 0.7977 | 0.9789 |
0.0068 | 8.4400 | 14500 | 0.1256 | 0.7858 | 0.8221 | 0.8036 | 0.9789 |
0.0067 | 8.7311 | 15000 | 0.1244 | 0.7864 | 0.8147 | 0.8003 | 0.9786 |
0.0064 | 9.0221 | 15500 | 0.1393 | 0.7636 | 0.8227 | 0.7921 | 0.9774 |
0.0049 | 9.3132 | 16000 | 0.1316 | 0.7727 | 0.8228 | 0.7970 | 0.9783 |
0.0056 | 9.6042 | 16500 | 0.1245 | 0.7831 | 0.8084 | 0.7955 | 0.9785 |
0.005 | 9.8952 | 17000 | 0.1383 | 0.7605 | 0.8298 | 0.7936 | 0.9781 |
0.0049 | 10.1863 | 17500 | 0.1368 | 0.7752 | 0.8215 | 0.7977 | 0.9787 |
0.0041 | 10.4773 | 18000 | 0.1400 | 0.7873 | 0.8155 | 0.8011 | 0.9789 |
0.0049 | 10.7683 | 18500 | 0.1303 | 0.7896 | 0.8134 | 0.8014 | 0.9788 |
0.0039 | 11.0594 | 19000 | 0.1434 | 0.7895 | 0.8052 | 0.7973 | 0.9790 |
0.0033 | 11.3504 | 19500 | 0.1511 | 0.7895 | 0.8162 | 0.8026 | 0.9790 |
0.0039 | 11.6414 | 20000 | 0.1424 | 0.7749 | 0.8240 | 0.7987 | 0.9787 |
0.0035 | 11.9325 | 20500 | 0.1528 | 0.7748 | 0.8150 | 0.7944 | 0.9781 |
0.0033 | 12.2235 | 21000 | 0.1479 | 0.7842 | 0.8191 | 0.8013 | 0.9788 |
0.0028 | 12.5146 | 21500 | 0.1533 | 0.7745 | 0.8280 | 0.8004 | 0.9786 |
0.0038 | 12.8056 | 22000 | 0.1417 | 0.7880 | 0.8221 | 0.8047 | 0.9792 |
0.0029 | 13.0966 | 22500 | 0.1592 | 0.7948 | 0.8121 | 0.8034 | 0.9788 |
0.0025 | 13.3877 | 23000 | 0.1603 | 0.7721 | 0.8274 | 0.7988 | 0.9783 |
0.0027 | 13.6787 | 23500 | 0.1516 | 0.7809 | 0.8217 | 0.8008 | 0.9787 |
0.0027 | 13.9697 | 24000 | 0.1514 | 0.7838 | 0.8237 | 0.8032 | 0.9791 |
0.0023 | 14.2608 | 24500 | 0.1571 | 0.7842 | 0.8218 | 0.8026 | 0.9789 |
0.0021 | 14.5518 | 25000 | 0.1666 | 0.7861 | 0.8111 | 0.7984 | 0.9787 |
0.0027 | 14.8428 | 25500 | 0.1616 | 0.7797 | 0.8285 | 0.8034 | 0.9787 |
0.0023 | 15.1339 | 26000 | 0.1515 | 0.7876 | 0.8208 | 0.8039 | 0.9789 |
0.002 | 15.4249 | 26500 | 0.1619 | 0.7861 | 0.8090 | 0.7974 | 0.9782 |
0.0021 | 15.7159 | 27000 | 0.1590 | 0.7857 | 0.8199 | 0.8025 | 0.9789 |
0.0022 | 16.0070 | 27500 | 0.1593 | 0.7982 | 0.8100 | 0.8041 | 0.9792 |
0.0014 | 16.2980 | 28000 | 0.1706 | 0.7820 | 0.8176 | 0.7994 | 0.9788 |
0.0017 | 16.5891 | 28500 | 0.1689 | 0.7854 | 0.8171 | 0.8009 | 0.9791 |
0.0018 | 16.8801 | 29000 | 0.1623 | 0.7975 | 0.8133 | 0.8053 | 0.9791 |
0.0018 | 17.1711 | 29500 | 0.1671 | 0.7867 | 0.8217 | 0.8038 | 0.9789 |
0.0014 | 17.4622 | 30000 | 0.1647 | 0.8033 | 0.8090 | 0.8061 | 0.9794 |
0.0019 | 17.7532 | 30500 | 0.1651 | 0.7849 | 0.8176 | 0.8009 | 0.9787 |
0.0015 | 18.0442 | 31000 | 0.1737 | 0.7952 | 0.8146 | 0.8048 | 0.9791 |
0.0011 | 18.3353 | 31500 | 0.1744 | 0.7820 | 0.8188 | 0.8000 | 0.9786 |
0.0012 | 18.6263 | 32000 | 0.1696 | 0.7954 | 0.8166 | 0.8059 | 0.9794 |
0.0013 | 18.9173 | 32500 | 0.1665 | 0.7901 | 0.8253 | 0.8073 | 0.9794 |
0.0011 | 19.2084 | 33000 | 0.1744 | 0.7833 | 0.8276 | 0.8048 | 0.9789 |
0.0014 | 19.4994 | 33500 | 0.1748 | 0.7989 | 0.8090 | 0.8039 | 0.9794 |
0.0011 | 19.7905 | 34000 | 0.1738 | 0.7972 | 0.8101 | 0.8036 | 0.9792 |
0.001 | 20.0815 | 34500 | 0.1768 | 0.7931 | 0.8185 | 0.8056 | 0.9792 |
0.0013 | 20.3725 | 35000 | 0.1731 | 0.7874 | 0.8211 | 0.8039 | 0.9792 |
0.001 | 20.6636 | 35500 | 0.1756 | 0.7945 | 0.8146 | 0.8044 | 0.9789 |
0.001 | 20.9546 | 36000 | 0.1745 | 0.7957 | 0.8160 | 0.8058 | 0.9792 |
0.001 | 21.2456 | 36500 | 0.1782 | 0.7871 | 0.8165 | 0.8015 | 0.9786 |
0.0007 | 21.5367 | 37000 | 0.1740 | 0.7929 | 0.8289 | 0.8105 | 0.9799 |
0.0007 | 21.8277 | 37500 | 0.1811 | 0.7883 | 0.8182 | 0.8030 | 0.9790 |
0.0011 | 22.1187 | 38000 | 0.1813 | 0.8015 | 0.8106 | 0.8060 | 0.9795 |
0.0008 | 22.4098 | 38500 | 0.1803 | 0.7840 | 0.8208 | 0.8020 | 0.9786 |
0.0006 | 22.7008 | 39000 | 0.1786 | 0.7934 | 0.8168 | 0.8049 | 0.9792 |
0.0008 | 22.9919 | 39500 | 0.1815 | 0.7993 | 0.8171 | 0.8081 | 0.9793 |
0.0007 | 23.2829 | 40000 | 0.1818 | 0.7956 | 0.8217 | 0.8084 | 0.9793 |
0.0004 | 23.5739 | 40500 | 0.1901 | 0.7849 | 0.8290 | 0.8063 | 0.9789 |
0.001 | 23.8650 | 41000 | 0.1808 | 0.8008 | 0.8149 | 0.8078 | 0.9795 |
0.0006 | 24.1560 | 41500 | 0.1821 | 0.7918 | 0.8186 | 0.8050 | 0.9788 |
0.0006 | 24.4470 | 42000 | 0.1788 | 0.8009 | 0.8153 | 0.8080 | 0.9798 |
0.0007 | 24.7381 | 42500 | 0.1792 | 0.7942 | 0.8250 | 0.8093 | 0.9795 |
0.0007 | 25.0291 | 43000 | 0.1781 | 0.7989 | 0.8155 | 0.8071 | 0.9793 |
0.0004 | 25.3201 | 43500 | 0.1827 | 0.7868 | 0.8250 | 0.8055 | 0.9792 |
0.0005 | 25.6112 | 44000 | 0.1834 | 0.7953 | 0.8218 | 0.8083 | 0.9795 |
0.0005 | 25.9022 | 44500 | 0.1849 | 0.7921 | 0.8217 | 0.8066 | 0.9794 |
0.0005 | 26.1932 | 45000 | 0.1905 | 0.7935 | 0.8228 | 0.8079 | 0.9794 |
0.0003 | 26.4843 | 45500 | 0.1871 | 0.8001 | 0.8139 | 0.8070 | 0.9794 |
0.0005 | 26.7753 | 46000 | 0.1864 | 0.7986 | 0.8191 | 0.8087 | 0.9795 |
0.0005 | 27.0664 | 46500 | 0.1865 | 0.7931 | 0.8215 | 0.8071 | 0.9795 |
0.0003 | 27.3574 | 47000 | 0.1878 | 0.7925 | 0.8189 | 0.8055 | 0.9794 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for haryoaw/scenario-non-kd-pre-ner-full-mdeberta_data-univner_full44
Base model
microsoft/mdeberta-v3-base