scenario-non-kd-pre-ner-full-mdeberta_data-univner_full55
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1810
- Precision: 0.8016
- Recall: 0.8287
- F1: 0.8149
- Accuracy: 0.9805
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2533 | 0.2910 | 500 | 0.1762 | 0.3617 | 0.4643 | 0.4066 | 0.9431 |
0.1474 | 0.5821 | 1000 | 0.1143 | 0.5629 | 0.6530 | 0.6046 | 0.9623 |
0.0981 | 0.8731 | 1500 | 0.0991 | 0.6150 | 0.7648 | 0.6818 | 0.9660 |
0.0741 | 1.1641 | 2000 | 0.0881 | 0.6947 | 0.7648 | 0.7281 | 0.9728 |
0.0611 | 1.4552 | 2500 | 0.0842 | 0.6933 | 0.7817 | 0.7348 | 0.9721 |
0.0561 | 1.7462 | 3000 | 0.0872 | 0.6999 | 0.8134 | 0.7524 | 0.9742 |
0.0496 | 2.0373 | 3500 | 0.0817 | 0.7669 | 0.7860 | 0.7763 | 0.9774 |
0.0386 | 2.3283 | 4000 | 0.0813 | 0.7546 | 0.8003 | 0.7768 | 0.9775 |
0.0363 | 2.6193 | 4500 | 0.0814 | 0.7764 | 0.8000 | 0.7880 | 0.9783 |
0.0353 | 2.9104 | 5000 | 0.0833 | 0.7458 | 0.8233 | 0.7826 | 0.9769 |
0.0277 | 3.2014 | 5500 | 0.0913 | 0.7522 | 0.8153 | 0.7825 | 0.9768 |
0.0249 | 3.4924 | 6000 | 0.0914 | 0.7489 | 0.8178 | 0.7818 | 0.9769 |
0.0251 | 3.7835 | 6500 | 0.0876 | 0.7678 | 0.8074 | 0.7871 | 0.9787 |
0.0226 | 4.0745 | 7000 | 0.0920 | 0.7756 | 0.8119 | 0.7933 | 0.9791 |
0.0168 | 4.3655 | 7500 | 0.0908 | 0.7683 | 0.8150 | 0.7910 | 0.9788 |
0.0175 | 4.6566 | 8000 | 0.0973 | 0.7701 | 0.8111 | 0.7901 | 0.9778 |
0.0182 | 4.9476 | 8500 | 0.0958 | 0.7483 | 0.8286 | 0.7864 | 0.9775 |
0.0132 | 5.2386 | 9000 | 0.0991 | 0.7796 | 0.8149 | 0.7968 | 0.9792 |
0.0129 | 5.5297 | 9500 | 0.1091 | 0.7670 | 0.8176 | 0.7915 | 0.9777 |
0.0129 | 5.8207 | 10000 | 0.1100 | 0.7649 | 0.8158 | 0.7895 | 0.9771 |
0.0132 | 6.1118 | 10500 | 0.1146 | 0.7719 | 0.8142 | 0.7924 | 0.9780 |
0.0102 | 6.4028 | 11000 | 0.1075 | 0.7845 | 0.8143 | 0.7992 | 0.9791 |
0.0105 | 6.6938 | 11500 | 0.1022 | 0.7820 | 0.8140 | 0.7977 | 0.9783 |
0.0106 | 6.9849 | 12000 | 0.1092 | 0.7708 | 0.8274 | 0.7981 | 0.9779 |
0.0078 | 7.2759 | 12500 | 0.1315 | 0.7387 | 0.8257 | 0.7798 | 0.9764 |
0.0076 | 7.5669 | 13000 | 0.1164 | 0.7722 | 0.8243 | 0.7974 | 0.9783 |
0.0085 | 7.8580 | 13500 | 0.1137 | 0.7855 | 0.8202 | 0.8025 | 0.9794 |
0.0081 | 8.1490 | 14000 | 0.1144 | 0.7888 | 0.8179 | 0.8031 | 0.9796 |
0.0059 | 8.4400 | 14500 | 0.1206 | 0.7811 | 0.8217 | 0.8009 | 0.9792 |
0.0072 | 8.7311 | 15000 | 0.1214 | 0.7719 | 0.8228 | 0.7966 | 0.9788 |
0.0053 | 9.0221 | 15500 | 0.1346 | 0.7736 | 0.8172 | 0.7948 | 0.9781 |
0.0051 | 9.3132 | 16000 | 0.1318 | 0.7768 | 0.8166 | 0.7962 | 0.9791 |
0.0054 | 9.6042 | 16500 | 0.1267 | 0.7811 | 0.8198 | 0.8 | 0.9792 |
0.0052 | 9.8952 | 17000 | 0.1346 | 0.7801 | 0.8235 | 0.8012 | 0.9789 |
0.0047 | 10.1863 | 17500 | 0.1300 | 0.7988 | 0.8120 | 0.8053 | 0.9798 |
0.0037 | 10.4773 | 18000 | 0.1267 | 0.7886 | 0.8136 | 0.8009 | 0.9792 |
0.0043 | 10.7683 | 18500 | 0.1334 | 0.7800 | 0.8264 | 0.8025 | 0.9787 |
0.0047 | 11.0594 | 19000 | 0.1311 | 0.8053 | 0.8042 | 0.8047 | 0.9794 |
0.0031 | 11.3504 | 19500 | 0.1522 | 0.7738 | 0.8227 | 0.7975 | 0.9786 |
0.0035 | 11.6414 | 20000 | 0.1439 | 0.7865 | 0.8227 | 0.8042 | 0.9797 |
0.0041 | 11.9325 | 20500 | 0.1360 | 0.7908 | 0.8222 | 0.8062 | 0.9792 |
0.0026 | 12.2235 | 21000 | 0.1542 | 0.7877 | 0.8222 | 0.8046 | 0.9798 |
0.0027 | 12.5146 | 21500 | 0.1467 | 0.7877 | 0.8184 | 0.8027 | 0.9796 |
0.0032 | 12.8056 | 22000 | 0.1403 | 0.7854 | 0.8133 | 0.7991 | 0.9789 |
0.0029 | 13.0966 | 22500 | 0.1575 | 0.7755 | 0.8199 | 0.7971 | 0.9786 |
0.0027 | 13.3877 | 23000 | 0.1418 | 0.7915 | 0.8225 | 0.8067 | 0.9797 |
0.0026 | 13.6787 | 23500 | 0.1516 | 0.7934 | 0.8233 | 0.8080 | 0.9796 |
0.0024 | 13.9697 | 24000 | 0.1531 | 0.7930 | 0.8194 | 0.8060 | 0.9796 |
0.002 | 14.2608 | 24500 | 0.1583 | 0.7898 | 0.8227 | 0.8059 | 0.9800 |
0.0025 | 14.5518 | 25000 | 0.1457 | 0.7784 | 0.8254 | 0.8012 | 0.9792 |
0.0027 | 14.8428 | 25500 | 0.1469 | 0.7778 | 0.8276 | 0.8019 | 0.9786 |
0.002 | 15.1339 | 26000 | 0.1598 | 0.7967 | 0.8158 | 0.8061 | 0.9798 |
0.0018 | 15.4249 | 26500 | 0.1480 | 0.7888 | 0.8256 | 0.8068 | 0.9798 |
0.0019 | 15.7159 | 27000 | 0.1477 | 0.7863 | 0.8289 | 0.8071 | 0.9795 |
0.0019 | 16.0070 | 27500 | 0.1555 | 0.7964 | 0.8251 | 0.8105 | 0.9798 |
0.0018 | 16.2980 | 28000 | 0.1511 | 0.7946 | 0.8218 | 0.8080 | 0.9799 |
0.0016 | 16.5891 | 28500 | 0.1503 | 0.8054 | 0.8159 | 0.8106 | 0.9800 |
0.0018 | 16.8801 | 29000 | 0.1584 | 0.7869 | 0.8267 | 0.8063 | 0.9795 |
0.0017 | 17.1711 | 29500 | 0.1555 | 0.7972 | 0.8233 | 0.8100 | 0.9800 |
0.0012 | 17.4622 | 30000 | 0.1609 | 0.7920 | 0.8185 | 0.8050 | 0.9792 |
0.0015 | 17.7532 | 30500 | 0.1615 | 0.7882 | 0.8274 | 0.8073 | 0.9793 |
0.0015 | 18.0442 | 31000 | 0.1543 | 0.7961 | 0.8298 | 0.8126 | 0.9803 |
0.0013 | 18.3353 | 31500 | 0.1658 | 0.7832 | 0.8365 | 0.8090 | 0.9796 |
0.0013 | 18.6263 | 32000 | 0.1639 | 0.7952 | 0.8199 | 0.8074 | 0.9796 |
0.0012 | 18.9173 | 32500 | 0.1608 | 0.8138 | 0.8085 | 0.8112 | 0.9801 |
0.0012 | 19.2084 | 33000 | 0.1584 | 0.7877 | 0.8256 | 0.8062 | 0.9796 |
0.0009 | 19.4994 | 33500 | 0.1660 | 0.7973 | 0.8201 | 0.8085 | 0.9799 |
0.0016 | 19.7905 | 34000 | 0.1544 | 0.7970 | 0.8260 | 0.8113 | 0.9802 |
0.0012 | 20.0815 | 34500 | 0.1569 | 0.7979 | 0.8295 | 0.8134 | 0.9802 |
0.0009 | 20.3725 | 35000 | 0.1656 | 0.8010 | 0.8215 | 0.8111 | 0.9798 |
0.0009 | 20.6636 | 35500 | 0.1636 | 0.8044 | 0.8172 | 0.8108 | 0.9801 |
0.0012 | 20.9546 | 36000 | 0.1594 | 0.7989 | 0.8273 | 0.8129 | 0.9803 |
0.001 | 21.2456 | 36500 | 0.1645 | 0.8027 | 0.8234 | 0.8129 | 0.9803 |
0.0007 | 21.5367 | 37000 | 0.1719 | 0.7851 | 0.8295 | 0.8067 | 0.9795 |
0.0008 | 21.8277 | 37500 | 0.1702 | 0.7920 | 0.8318 | 0.8114 | 0.9798 |
0.0007 | 22.1187 | 38000 | 0.1694 | 0.7970 | 0.8289 | 0.8126 | 0.9803 |
0.0007 | 22.4098 | 38500 | 0.1710 | 0.8057 | 0.8221 | 0.8138 | 0.9803 |
0.0008 | 22.7008 | 39000 | 0.1650 | 0.8043 | 0.8240 | 0.8140 | 0.9803 |
0.0008 | 22.9919 | 39500 | 0.1735 | 0.7864 | 0.8285 | 0.8069 | 0.9794 |
0.0006 | 23.2829 | 40000 | 0.1715 | 0.7925 | 0.8272 | 0.8095 | 0.9798 |
0.0007 | 23.5739 | 40500 | 0.1682 | 0.7933 | 0.8309 | 0.8116 | 0.9800 |
0.0006 | 23.8650 | 41000 | 0.1664 | 0.8010 | 0.8260 | 0.8133 | 0.9802 |
0.0007 | 24.1560 | 41500 | 0.1684 | 0.8016 | 0.8218 | 0.8116 | 0.9802 |
0.0006 | 24.4470 | 42000 | 0.1725 | 0.8004 | 0.8244 | 0.8122 | 0.9801 |
0.0005 | 24.7381 | 42500 | 0.1776 | 0.7944 | 0.8283 | 0.8110 | 0.9799 |
0.0004 | 25.0291 | 43000 | 0.1796 | 0.7954 | 0.8296 | 0.8121 | 0.9800 |
0.0006 | 25.3201 | 43500 | 0.1774 | 0.7969 | 0.8263 | 0.8113 | 0.9803 |
0.0005 | 25.6112 | 44000 | 0.1755 | 0.8064 | 0.8243 | 0.8152 | 0.9805 |
0.0006 | 25.9022 | 44500 | 0.1730 | 0.7992 | 0.8286 | 0.8136 | 0.9802 |
0.0004 | 26.1932 | 45000 | 0.1739 | 0.7966 | 0.8251 | 0.8106 | 0.9802 |
0.0005 | 26.4843 | 45500 | 0.1728 | 0.7985 | 0.8263 | 0.8122 | 0.9802 |
0.0004 | 26.7753 | 46000 | 0.1763 | 0.8011 | 0.8266 | 0.8137 | 0.9804 |
0.0003 | 27.0664 | 46500 | 0.1759 | 0.8018 | 0.8287 | 0.8150 | 0.9804 |
0.0004 | 27.3574 | 47000 | 0.1768 | 0.8034 | 0.8256 | 0.8143 | 0.9804 |
0.0004 | 27.6484 | 47500 | 0.1783 | 0.8022 | 0.8260 | 0.8139 | 0.9804 |
0.0003 | 27.9395 | 48000 | 0.1815 | 0.7976 | 0.8280 | 0.8125 | 0.9801 |
0.0003 | 28.2305 | 48500 | 0.1793 | 0.8016 | 0.8253 | 0.8133 | 0.9804 |
0.0003 | 28.5215 | 49000 | 0.1794 | 0.8006 | 0.8298 | 0.8149 | 0.9804 |
0.0004 | 28.8126 | 49500 | 0.1808 | 0.7996 | 0.8312 | 0.8151 | 0.9804 |
0.0003 | 29.1036 | 50000 | 0.1801 | 0.8006 | 0.8280 | 0.8141 | 0.9804 |
0.0002 | 29.3946 | 50500 | 0.1817 | 0.7983 | 0.8305 | 0.8141 | 0.9804 |
0.0004 | 29.6857 | 51000 | 0.1805 | 0.8042 | 0.8266 | 0.8152 | 0.9805 |
0.0003 | 29.9767 | 51500 | 0.1810 | 0.8016 | 0.8287 | 0.8149 | 0.9805 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for haryoaw/scenario-non-kd-pre-ner-full-mdeberta_data-univner_full55
Base model
microsoft/mdeberta-v3-base