haryoaw commited on
Commit
03be72d
1 Parent(s): b60c8c6

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +114 -40
  2. config.json +3 -3
  3. eval_result_ner.json +1 -1
  4. model.safetensors +2 -2
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: haryoaw/scenario-TCR-NER_data-univner_full
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-non-kd-pre-ner-full-mdeberta_data-univner_full55
14
  results: []
@@ -19,13 +19,13 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  # scenario-non-kd-pre-ner-full-mdeberta_data-univner_full55
21
 
22
- This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.1060
25
- - Precision: 0.8557
26
- - Recall: 0.8888
27
- - F1: 0.8719
28
- - Accuracy: 0.9853
29
 
30
  ## Model description
31
 
@@ -54,37 +54,111 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
- |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.0144 | 0.2910 | 500 | 0.0681 | 0.8603 | 0.8727 | 0.8665 | 0.9851 |
60
- | 0.015 | 0.5821 | 1000 | 0.0669 | 0.8459 | 0.8798 | 0.8625 | 0.9847 |
61
- | 0.0152 | 0.8731 | 1500 | 0.0716 | 0.8427 | 0.8813 | 0.8616 | 0.9845 |
62
- | 0.0114 | 1.1641 | 2000 | 0.0766 | 0.8529 | 0.8710 | 0.8619 | 0.9849 |
63
- | 0.0099 | 1.4552 | 2500 | 0.0759 | 0.8416 | 0.8971 | 0.8685 | 0.9846 |
64
- | 0.012 | 1.7462 | 3000 | 0.0746 | 0.8609 | 0.8768 | 0.8688 | 0.9854 |
65
- | 0.0092 | 2.0373 | 3500 | 0.0841 | 0.8575 | 0.8766 | 0.8669 | 0.9853 |
66
- | 0.009 | 2.3283 | 4000 | 0.0788 | 0.8515 | 0.8820 | 0.8665 | 0.9849 |
67
- | 0.0085 | 2.6193 | 4500 | 0.0837 | 0.8699 | 0.8787 | 0.8742 | 0.9858 |
68
- | 0.009 | 2.9104 | 5000 | 0.0728 | 0.8649 | 0.8801 | 0.8724 | 0.9858 |
69
- | 0.0075 | 3.2014 | 5500 | 0.0868 | 0.8663 | 0.8730 | 0.8696 | 0.9857 |
70
- | 0.0063 | 3.4924 | 6000 | 0.0856 | 0.8689 | 0.8742 | 0.8715 | 0.9858 |
71
- | 0.0071 | 3.7835 | 6500 | 0.0847 | 0.8589 | 0.8811 | 0.8699 | 0.9857 |
72
- | 0.0063 | 4.0745 | 7000 | 0.0927 | 0.8668 | 0.8748 | 0.8707 | 0.9857 |
73
- | 0.0046 | 4.3655 | 7500 | 0.0961 | 0.8619 | 0.8628 | 0.8624 | 0.9849 |
74
- | 0.0061 | 4.6566 | 8000 | 0.0863 | 0.8565 | 0.8738 | 0.8650 | 0.9852 |
75
- | 0.006 | 4.9476 | 8500 | 0.0896 | 0.8623 | 0.8752 | 0.8687 | 0.9856 |
76
- | 0.0039 | 5.2386 | 9000 | 0.0883 | 0.8535 | 0.8869 | 0.8699 | 0.9852 |
77
- | 0.0044 | 5.5297 | 9500 | 0.0973 | 0.8636 | 0.8753 | 0.8694 | 0.9856 |
78
- | 0.0044 | 5.8207 | 10000 | 0.1008 | 0.8550 | 0.8689 | 0.8619 | 0.9844 |
79
- | 0.005 | 6.1118 | 10500 | 0.1016 | 0.8481 | 0.8730 | 0.8604 | 0.9844 |
80
- | 0.0036 | 6.4028 | 11000 | 0.1034 | 0.8393 | 0.8759 | 0.8572 | 0.9841 |
81
- | 0.0036 | 6.6938 | 11500 | 0.1101 | 0.8478 | 0.8795 | 0.8634 | 0.9850 |
82
- | 0.0038 | 6.9849 | 12000 | 0.1020 | 0.8538 | 0.8782 | 0.8659 | 0.9848 |
83
- | 0.0027 | 7.2759 | 12500 | 0.1029 | 0.8502 | 0.8843 | 0.8669 | 0.9852 |
84
- | 0.0027 | 7.5669 | 13000 | 0.1047 | 0.8636 | 0.8807 | 0.8721 | 0.9858 |
85
- | 0.003 | 7.8580 | 13500 | 0.1086 | 0.8625 | 0.8800 | 0.8712 | 0.9857 |
86
- | 0.0035 | 8.1490 | 14000 | 0.1059 | 0.8657 | 0.8752 | 0.8704 | 0.9854 |
87
- | 0.0027 | 8.4400 | 14500 | 0.1060 | 0.8557 | 0.8888 | 0.8719 | 0.9853 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
 
90
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: microsoft/mdeberta-v3-base
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-non-kd-pre-ner-full-mdeberta_data-univner_full55
14
  results: []
 
19
 
20
  # scenario-non-kd-pre-ner-full-mdeberta_data-univner_full55
21
 
22
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.1841
25
+ - Precision: 0.8015
26
+ - Recall: 0.8248
27
+ - F1: 0.8130
28
+ - Accuracy: 0.9804
29
 
30
  ## Model description
31
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.2548 | 0.2910 | 500 | 0.1794 | 0.3392 | 0.4613 | 0.3909 | 0.9392 |
60
+ | 0.1474 | 0.5821 | 1000 | 0.1201 | 0.5290 | 0.6425 | 0.5802 | 0.9597 |
61
+ | 0.0973 | 0.8731 | 1500 | 0.1020 | 0.5970 | 0.7570 | 0.6676 | 0.9651 |
62
+ | 0.0751 | 1.1641 | 2000 | 0.0905 | 0.6815 | 0.7547 | 0.7162 | 0.9719 |
63
+ | 0.062 | 1.4552 | 2500 | 0.0891 | 0.6689 | 0.7826 | 0.7213 | 0.9706 |
64
+ | 0.0566 | 1.7462 | 3000 | 0.0927 | 0.6774 | 0.8134 | 0.7392 | 0.9726 |
65
+ | 0.0506 | 2.0373 | 3500 | 0.0850 | 0.7449 | 0.7879 | 0.7658 | 0.9766 |
66
+ | 0.0407 | 2.3283 | 4000 | 0.0832 | 0.7512 | 0.7969 | 0.7734 | 0.9775 |
67
+ | 0.0374 | 2.6193 | 4500 | 0.0828 | 0.7646 | 0.7974 | 0.7806 | 0.9781 |
68
+ | 0.036 | 2.9104 | 5000 | 0.0852 | 0.7362 | 0.8211 | 0.7763 | 0.9766 |
69
+ | 0.0277 | 3.2014 | 5500 | 0.0903 | 0.7474 | 0.8104 | 0.7777 | 0.9773 |
70
+ | 0.0254 | 3.4924 | 6000 | 0.0928 | 0.7448 | 0.8149 | 0.7783 | 0.9769 |
71
+ | 0.0254 | 3.7835 | 6500 | 0.0881 | 0.7661 | 0.8038 | 0.7845 | 0.9789 |
72
+ | 0.0229 | 4.0745 | 7000 | 0.0976 | 0.7564 | 0.8204 | 0.7871 | 0.9784 |
73
+ | 0.017 | 4.3655 | 7500 | 0.0949 | 0.7647 | 0.8116 | 0.7874 | 0.9784 |
74
+ | 0.018 | 4.6566 | 8000 | 0.0992 | 0.7693 | 0.8035 | 0.7860 | 0.9779 |
75
+ | 0.0183 | 4.9476 | 8500 | 0.1043 | 0.7392 | 0.8373 | 0.7852 | 0.9768 |
76
+ | 0.014 | 5.2386 | 9000 | 0.1032 | 0.7642 | 0.8221 | 0.7921 | 0.9783 |
77
+ | 0.0127 | 5.5297 | 9500 | 0.1045 | 0.7600 | 0.8256 | 0.7914 | 0.9780 |
78
+ | 0.0133 | 5.8207 | 10000 | 0.1071 | 0.7724 | 0.8015 | 0.7867 | 0.9780 |
79
+ | 0.013 | 6.1118 | 10500 | 0.1089 | 0.7804 | 0.8129 | 0.7963 | 0.9792 |
80
+ | 0.0101 | 6.4028 | 11000 | 0.1110 | 0.7918 | 0.8071 | 0.7994 | 0.9790 |
81
+ | 0.0103 | 6.6938 | 11500 | 0.1102 | 0.7761 | 0.8178 | 0.7964 | 0.9783 |
82
+ | 0.0109 | 6.9849 | 12000 | 0.1082 | 0.7658 | 0.8273 | 0.7953 | 0.9781 |
83
+ | 0.0077 | 7.2759 | 12500 | 0.1196 | 0.7627 | 0.8188 | 0.7897 | 0.9784 |
84
+ | 0.008 | 7.5669 | 13000 | 0.1187 | 0.7664 | 0.8181 | 0.7914 | 0.9783 |
85
+ | 0.0087 | 7.8580 | 13500 | 0.1136 | 0.7819 | 0.8179 | 0.7995 | 0.9791 |
86
+ | 0.0082 | 8.1490 | 14000 | 0.1227 | 0.7753 | 0.8178 | 0.7960 | 0.9792 |
87
+ | 0.0061 | 8.4400 | 14500 | 0.1244 | 0.7782 | 0.8207 | 0.7989 | 0.9789 |
88
+ | 0.0067 | 8.7311 | 15000 | 0.1293 | 0.7606 | 0.8270 | 0.7924 | 0.9780 |
89
+ | 0.0058 | 9.0221 | 15500 | 0.1379 | 0.7671 | 0.8145 | 0.7901 | 0.9775 |
90
+ | 0.0056 | 9.3132 | 16000 | 0.1311 | 0.7873 | 0.8113 | 0.7991 | 0.9794 |
91
+ | 0.0051 | 9.6042 | 16500 | 0.1273 | 0.7852 | 0.8084 | 0.7966 | 0.9794 |
92
+ | 0.0048 | 9.8952 | 17000 | 0.1395 | 0.7557 | 0.8309 | 0.7915 | 0.9773 |
93
+ | 0.0043 | 10.1863 | 17500 | 0.1349 | 0.7967 | 0.8165 | 0.8065 | 0.9797 |
94
+ | 0.0042 | 10.4773 | 18000 | 0.1322 | 0.7949 | 0.8110 | 0.8029 | 0.9795 |
95
+ | 0.0043 | 10.7683 | 18500 | 0.1372 | 0.7900 | 0.8087 | 0.7992 | 0.9792 |
96
+ | 0.0046 | 11.0594 | 19000 | 0.1335 | 0.8052 | 0.8012 | 0.8032 | 0.9797 |
97
+ | 0.0032 | 11.3504 | 19500 | 0.1388 | 0.7785 | 0.8238 | 0.8005 | 0.9792 |
98
+ | 0.0036 | 11.6414 | 20000 | 0.1454 | 0.7869 | 0.8221 | 0.8041 | 0.9795 |
99
+ | 0.004 | 11.9325 | 20500 | 0.1351 | 0.7869 | 0.8097 | 0.7981 | 0.9789 |
100
+ | 0.0029 | 12.2235 | 21000 | 0.1549 | 0.7811 | 0.8238 | 0.8019 | 0.9791 |
101
+ | 0.0025 | 12.5146 | 21500 | 0.1498 | 0.7914 | 0.8160 | 0.8035 | 0.9794 |
102
+ | 0.0031 | 12.8056 | 22000 | 0.1470 | 0.7946 | 0.8142 | 0.8042 | 0.9793 |
103
+ | 0.0034 | 13.0966 | 22500 | 0.1481 | 0.7878 | 0.8137 | 0.8006 | 0.9793 |
104
+ | 0.0022 | 13.3877 | 23000 | 0.1500 | 0.7884 | 0.8225 | 0.8051 | 0.9794 |
105
+ | 0.0026 | 13.6787 | 23500 | 0.1525 | 0.7870 | 0.8277 | 0.8068 | 0.9796 |
106
+ | 0.003 | 13.9697 | 24000 | 0.1482 | 0.7918 | 0.8205 | 0.8059 | 0.9798 |
107
+ | 0.0021 | 14.2608 | 24500 | 0.1533 | 0.7786 | 0.8234 | 0.8004 | 0.9792 |
108
+ | 0.0023 | 14.5518 | 25000 | 0.1453 | 0.7835 | 0.8238 | 0.8032 | 0.9797 |
109
+ | 0.0024 | 14.8428 | 25500 | 0.1506 | 0.7873 | 0.8277 | 0.8070 | 0.9796 |
110
+ | 0.0021 | 15.1339 | 26000 | 0.1561 | 0.7996 | 0.8169 | 0.8082 | 0.9798 |
111
+ | 0.0018 | 15.4249 | 26500 | 0.1603 | 0.7859 | 0.8243 | 0.8046 | 0.9793 |
112
+ | 0.0019 | 15.7159 | 27000 | 0.1665 | 0.7835 | 0.8189 | 0.8008 | 0.9794 |
113
+ | 0.0019 | 16.0070 | 27500 | 0.1543 | 0.7921 | 0.8153 | 0.8036 | 0.9796 |
114
+ | 0.0017 | 16.2980 | 28000 | 0.1694 | 0.7956 | 0.8130 | 0.8042 | 0.9796 |
115
+ | 0.0018 | 16.5891 | 28500 | 0.1573 | 0.7930 | 0.8100 | 0.8014 | 0.9794 |
116
+ | 0.0019 | 16.8801 | 29000 | 0.1544 | 0.7930 | 0.8220 | 0.8072 | 0.9795 |
117
+ | 0.0016 | 17.1711 | 29500 | 0.1628 | 0.7900 | 0.8237 | 0.8065 | 0.9795 |
118
+ | 0.0014 | 17.4622 | 30000 | 0.1609 | 0.7875 | 0.8208 | 0.8038 | 0.9793 |
119
+ | 0.0014 | 17.7532 | 30500 | 0.1637 | 0.7844 | 0.8241 | 0.8038 | 0.9793 |
120
+ | 0.0016 | 18.0442 | 31000 | 0.1647 | 0.7964 | 0.8124 | 0.8043 | 0.9798 |
121
+ | 0.0014 | 18.3353 | 31500 | 0.1690 | 0.7962 | 0.8149 | 0.8054 | 0.9800 |
122
+ | 0.0012 | 18.6263 | 32000 | 0.1759 | 0.7837 | 0.8254 | 0.8040 | 0.9792 |
123
+ | 0.001 | 18.9173 | 32500 | 0.1764 | 0.7950 | 0.8159 | 0.8053 | 0.9797 |
124
+ | 0.0011 | 19.2084 | 33000 | 0.1684 | 0.8022 | 0.8106 | 0.8064 | 0.9802 |
125
+ | 0.001 | 19.4994 | 33500 | 0.1723 | 0.7944 | 0.8143 | 0.8042 | 0.9797 |
126
+ | 0.0014 | 19.7905 | 34000 | 0.1637 | 0.7886 | 0.8300 | 0.8088 | 0.9801 |
127
+ | 0.0013 | 20.0815 | 34500 | 0.1633 | 0.7885 | 0.8201 | 0.8040 | 0.9799 |
128
+ | 0.001 | 20.3725 | 35000 | 0.1682 | 0.7955 | 0.8251 | 0.8101 | 0.9799 |
129
+ | 0.0009 | 20.6636 | 35500 | 0.1735 | 0.7956 | 0.8222 | 0.8087 | 0.9798 |
130
+ | 0.0009 | 20.9546 | 36000 | 0.1765 | 0.7898 | 0.8231 | 0.8061 | 0.9796 |
131
+ | 0.0012 | 21.2456 | 36500 | 0.1754 | 0.7977 | 0.8243 | 0.8108 | 0.9800 |
132
+ | 0.0006 | 21.5367 | 37000 | 0.1710 | 0.7978 | 0.8176 | 0.8076 | 0.9799 |
133
+ | 0.0008 | 21.8277 | 37500 | 0.1650 | 0.8035 | 0.8256 | 0.8144 | 0.9800 |
134
+ | 0.0007 | 22.1187 | 38000 | 0.1702 | 0.7893 | 0.8341 | 0.8111 | 0.9795 |
135
+ | 0.0007 | 22.4098 | 38500 | 0.1724 | 0.8086 | 0.8067 | 0.8077 | 0.9801 |
136
+ | 0.0008 | 22.7008 | 39000 | 0.1714 | 0.7951 | 0.8224 | 0.8085 | 0.9800 |
137
+ | 0.0007 | 22.9919 | 39500 | 0.1757 | 0.8010 | 0.8194 | 0.8101 | 0.9803 |
138
+ | 0.0005 | 23.2829 | 40000 | 0.1776 | 0.8002 | 0.8261 | 0.8129 | 0.9802 |
139
+ | 0.0007 | 23.5739 | 40500 | 0.1771 | 0.7978 | 0.8273 | 0.8123 | 0.9802 |
140
+ | 0.0007 | 23.8650 | 41000 | 0.1800 | 0.7984 | 0.8233 | 0.8106 | 0.9801 |
141
+ | 0.0007 | 24.1560 | 41500 | 0.1761 | 0.7970 | 0.8261 | 0.8113 | 0.9799 |
142
+ | 0.0005 | 24.4470 | 42000 | 0.1729 | 0.8041 | 0.8220 | 0.8129 | 0.9801 |
143
+ | 0.0007 | 24.7381 | 42500 | 0.1753 | 0.8066 | 0.8214 | 0.8139 | 0.9802 |
144
+ | 0.0004 | 25.0291 | 43000 | 0.1812 | 0.7875 | 0.8308 | 0.8085 | 0.9796 |
145
+ | 0.0006 | 25.3201 | 43500 | 0.1773 | 0.7991 | 0.8240 | 0.8113 | 0.9801 |
146
+ | 0.0005 | 25.6112 | 44000 | 0.1771 | 0.7996 | 0.8168 | 0.8081 | 0.9801 |
147
+ | 0.0005 | 25.9022 | 44500 | 0.1780 | 0.7986 | 0.8266 | 0.8123 | 0.9801 |
148
+ | 0.0004 | 26.1932 | 45000 | 0.1788 | 0.7999 | 0.8227 | 0.8112 | 0.9802 |
149
+ | 0.0005 | 26.4843 | 45500 | 0.1792 | 0.7981 | 0.8277 | 0.8127 | 0.9802 |
150
+ | 0.0004 | 26.7753 | 46000 | 0.1807 | 0.7959 | 0.8250 | 0.8102 | 0.9801 |
151
+ | 0.0004 | 27.0664 | 46500 | 0.1807 | 0.8079 | 0.8217 | 0.8147 | 0.9804 |
152
+ | 0.0005 | 27.3574 | 47000 | 0.1818 | 0.8013 | 0.8254 | 0.8132 | 0.9803 |
153
+ | 0.0005 | 27.6484 | 47500 | 0.1814 | 0.7985 | 0.8220 | 0.8100 | 0.9802 |
154
+ | 0.0003 | 27.9395 | 48000 | 0.1831 | 0.8010 | 0.8261 | 0.8134 | 0.9803 |
155
+ | 0.0003 | 28.2305 | 48500 | 0.1836 | 0.8051 | 0.8222 | 0.8136 | 0.9803 |
156
+ | 0.0002 | 28.5215 | 49000 | 0.1857 | 0.8028 | 0.8237 | 0.8131 | 0.9803 |
157
+ | 0.0007 | 28.8126 | 49500 | 0.1839 | 0.7976 | 0.8272 | 0.8121 | 0.9803 |
158
+ | 0.0003 | 29.1036 | 50000 | 0.1839 | 0.8037 | 0.8243 | 0.8139 | 0.9803 |
159
+ | 0.0002 | 29.3946 | 50500 | 0.1842 | 0.8026 | 0.8238 | 0.8131 | 0.9804 |
160
+ | 0.0002 | 29.6857 | 51000 | 0.1843 | 0.8004 | 0.8247 | 0.8124 | 0.9803 |
161
+ | 0.0003 | 29.9767 | 51500 | 0.1841 | 0.8015 | 0.8248 | 0.8130 | 0.9804 |
162
 
163
 
164
  ### Framework versions
config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
- "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_full",
3
  "architectures": [
4
- "DebertaV2ForTokenClassification"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "hidden_act": "gelu",
@@ -33,7 +33,7 @@
33
  "model_type": "deberta-v2",
34
  "norm_rel_ebd": "layer_norm",
35
  "num_attention_heads": 12,
36
- "num_hidden_layers": 12,
37
  "pad_token_id": 0,
38
  "pooler_dropout": 0,
39
  "pooler_hidden_act": "gelu",
 
1
  {
2
+ "_name_or_path": "microsoft/mdeberta-v3-base",
3
  "architectures": [
4
+ "DebertaForTokenClassification"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "hidden_act": "gelu",
 
33
  "model_type": "deberta-v2",
34
  "norm_rel_ebd": "layer_norm",
35
  "num_attention_heads": 12,
36
+ "num_hidden_layers": 6,
37
  "pad_token_id": 0,
38
  "pooler_dropout": 0,
39
  "pooler_hidden_act": "gelu",
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.7540983606557377, "recall": 0.9387755102040817, "f1": 0.8363636363636363, "accuracy": 0.9861003861003861}, "en_pud": {"precision": 0.8334901222953904, "recall": 0.8241860465116279, "f1": 0.8288119738072965, "accuracy": 0.9837079712882508}, "de_pud": {"precision": 0.8020257826887661, "recall": 0.8383060635226179, "f1": 0.819764705882353, "accuracy": 0.9803103464441423}, "pt_pud": {"precision": 0.89937106918239, "recall": 0.910828025477707, "f1": 0.9050632911392406, "accuracy": 0.990045712820951}, "ru_pud": {"precision": 0.7242314647377939, "recall": 0.7731660231660231, "f1": 0.7478991596638656, "accuracy": 0.9744252131232239}, "sv_pud": {"precision": 0.8659003831417624, "recall": 0.8785228377065112, "f1": 0.8721659430776653, "accuracy": 0.9869993709373034}, "tl_trg": {"precision": 0.7096774193548387, "recall": 0.9565217391304348, "f1": 0.8148148148148149, "accuracy": 0.9863760217983651}, "tl_ugnayan": {"precision": 0.625, "recall": 0.7575757575757576, "f1": 0.6849315068493151, "accuracy": 0.9744758432087511}, "zh_gsd": {"precision": 0.8431876606683805, "recall": 0.8552803129074316, "f1": 0.849190938511327, "accuracy": 0.9792707292707292}, "zh_gsdsimp": {"precision": 0.8591916558018253, "recall": 0.8636959370904325, "f1": 0.8614379084967321, "accuracy": 0.9808524808524809}, "hr_set": {"precision": 0.9257703081232493, "recall": 0.9422665716322167, "f1": 0.9339456022606853, "accuracy": 0.9911376751854906}, "da_ddt": {"precision": 0.8909512761020881, "recall": 0.8590604026845637, "f1": 0.8747152619589977, "accuracy": 0.990222488276963}, "en_ewt": {"precision": 0.8376681614349776, "recall": 0.8584558823529411, "f1": 0.8479346345891965, "accuracy": 0.9841016854604135}, "pt_bosque": {"precision": 0.8909836065573771, "recall": 0.8946502057613168, "f1": 0.8928131416837782, "accuracy": 0.9889871033183597}, "sr_set": {"precision": 0.9550827423167849, "recall": 0.9539551357733176, "f1": 0.9545186060248081, "accuracy": 0.9905437352245863}, "sk_snk": {"precision": 0.8300865800865801, "recall": 0.8382513661202186, "f1": 0.8341489940184883, "accuracy": 0.9755810301507538}, "sv_talbanken": {"precision": 0.8551401869158879, "recall": 0.9336734693877551, "f1": 0.8926829268292682, "accuracy": 0.9978897776905334}}
 
1
+ {"ceb_gja": {"precision": 0.6515151515151515, "recall": 0.8775510204081632, "f1": 0.7478260869565216, "accuracy": 0.9776061776061776}, "en_pud": {"precision": 0.7723658051689861, "recall": 0.7227906976744186, "f1": 0.7467563671311869, "accuracy": 0.9759633547412164}, "de_pud": {"precision": 0.6787658802177858, "recall": 0.7199230028873917, "f1": 0.6987389070527791, "accuracy": 0.9672307908677512}, "pt_pud": {"precision": 0.7969991173874669, "recall": 0.821656050955414, "f1": 0.8091397849462365, "accuracy": 0.9815439825693169}, "ru_pud": {"precision": 0.6383587786259542, "recall": 0.6457528957528957, "f1": 0.6420345489443379, "accuracy": 0.9644536295530871}, "sv_pud": {"precision": 0.8083511777301927, "recall": 0.7337220602526725, "f1": 0.7692307692307692, "accuracy": 0.9777206961627175}, "tl_trg": {"precision": 0.5806451612903226, "recall": 0.782608695652174, "f1": 0.6666666666666667, "accuracy": 0.9782016348773842}, "tl_ugnayan": {"precision": 0.47619047619047616, "recall": 0.6060606060606061, "f1": 0.5333333333333333, "accuracy": 0.968094804010939}, "zh_gsd": {"precision": 0.7763157894736842, "recall": 0.7692307692307693, "f1": 0.7727570399476097, "accuracy": 0.9695304695304695}, "zh_gsdsimp": {"precision": 0.8037135278514589, "recall": 0.7942332896461337, "f1": 0.7989452867501649, "accuracy": 0.9715284715284715}, "hr_set": {"precision": 0.8647887323943662, "recall": 0.8752672843905915, "f1": 0.8699964576691462, "accuracy": 0.9847897774113767}, "da_ddt": {"precision": 0.8177339901477833, "recall": 0.7427293064876958, "f1": 0.7784290738569754, "accuracy": 0.9828394692207921}, "en_ewt": {"precision": 0.7855731225296443, "recall": 0.7306985294117647, "f1": 0.7571428571428571, "accuracy": 0.9759333784914531}, "pt_bosque": {"precision": 0.8103025347506132, "recall": 0.8156378600823045, "f1": 0.8129614438063987, "accuracy": 0.9831183886393277}, "sr_set": {"precision": 0.9129916567342073, "recall": 0.9043683589138135, "f1": 0.9086595492289441, "accuracy": 0.9862533928727782}, "sk_snk": {"precision": 0.7371565113500598, "recall": 0.6743169398907104, "f1": 0.704337899543379, "accuracy": 0.9607412060301508}, "sv_talbanken": {"precision": 0.8697916666666666, "recall": 0.8520408163265306, "f1": 0.8608247422680413, "accuracy": 0.9970064288168032}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b5de29fd489e84af371da08d783149df911fb57c9c54eada7d713a20d3945a57
3
- size 1112921036
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d02d8ac3c427e0ddad004e4aaa479376aa8222abdfc72ca549796c4ca1976778
3
+ size 944366708
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fb809d58c892484a0b7ea895f0f3a8469b8c8fa2c8cfdbebcb9fdcc48b9b5e75
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf6a5128396feff67c615c2c3dc88b71467610d4ccff0016fa48dc94344565ed
3
  size 5304