haryoaw commited on
Commit
fed58fc
1 Parent(s): d7a08e2

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +95 -0
  2. config.json +53 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_full
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-non-kd-pre-ner-full-mdeberta_data-univner_full55
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-non-kd-pre-ner-full-mdeberta_data-univner_full55
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1060
25
+ - Precision: 0.8557
26
+ - Recall: 0.8888
27
+ - F1: 0.8719
28
+ - Accuracy: 0.9853
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 55
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0144 | 0.2910 | 500 | 0.0681 | 0.8603 | 0.8727 | 0.8665 | 0.9851 |
60
+ | 0.015 | 0.5821 | 1000 | 0.0669 | 0.8459 | 0.8798 | 0.8625 | 0.9847 |
61
+ | 0.0152 | 0.8731 | 1500 | 0.0716 | 0.8427 | 0.8813 | 0.8616 | 0.9845 |
62
+ | 0.0114 | 1.1641 | 2000 | 0.0766 | 0.8529 | 0.8710 | 0.8619 | 0.9849 |
63
+ | 0.0099 | 1.4552 | 2500 | 0.0759 | 0.8416 | 0.8971 | 0.8685 | 0.9846 |
64
+ | 0.012 | 1.7462 | 3000 | 0.0746 | 0.8609 | 0.8768 | 0.8688 | 0.9854 |
65
+ | 0.0092 | 2.0373 | 3500 | 0.0841 | 0.8575 | 0.8766 | 0.8669 | 0.9853 |
66
+ | 0.009 | 2.3283 | 4000 | 0.0788 | 0.8515 | 0.8820 | 0.8665 | 0.9849 |
67
+ | 0.0085 | 2.6193 | 4500 | 0.0837 | 0.8699 | 0.8787 | 0.8742 | 0.9858 |
68
+ | 0.009 | 2.9104 | 5000 | 0.0728 | 0.8649 | 0.8801 | 0.8724 | 0.9858 |
69
+ | 0.0075 | 3.2014 | 5500 | 0.0868 | 0.8663 | 0.8730 | 0.8696 | 0.9857 |
70
+ | 0.0063 | 3.4924 | 6000 | 0.0856 | 0.8689 | 0.8742 | 0.8715 | 0.9858 |
71
+ | 0.0071 | 3.7835 | 6500 | 0.0847 | 0.8589 | 0.8811 | 0.8699 | 0.9857 |
72
+ | 0.0063 | 4.0745 | 7000 | 0.0927 | 0.8668 | 0.8748 | 0.8707 | 0.9857 |
73
+ | 0.0046 | 4.3655 | 7500 | 0.0961 | 0.8619 | 0.8628 | 0.8624 | 0.9849 |
74
+ | 0.0061 | 4.6566 | 8000 | 0.0863 | 0.8565 | 0.8738 | 0.8650 | 0.9852 |
75
+ | 0.006 | 4.9476 | 8500 | 0.0896 | 0.8623 | 0.8752 | 0.8687 | 0.9856 |
76
+ | 0.0039 | 5.2386 | 9000 | 0.0883 | 0.8535 | 0.8869 | 0.8699 | 0.9852 |
77
+ | 0.0044 | 5.5297 | 9500 | 0.0973 | 0.8636 | 0.8753 | 0.8694 | 0.9856 |
78
+ | 0.0044 | 5.8207 | 10000 | 0.1008 | 0.8550 | 0.8689 | 0.8619 | 0.9844 |
79
+ | 0.005 | 6.1118 | 10500 | 0.1016 | 0.8481 | 0.8730 | 0.8604 | 0.9844 |
80
+ | 0.0036 | 6.4028 | 11000 | 0.1034 | 0.8393 | 0.8759 | 0.8572 | 0.9841 |
81
+ | 0.0036 | 6.6938 | 11500 | 0.1101 | 0.8478 | 0.8795 | 0.8634 | 0.9850 |
82
+ | 0.0038 | 6.9849 | 12000 | 0.1020 | 0.8538 | 0.8782 | 0.8659 | 0.9848 |
83
+ | 0.0027 | 7.2759 | 12500 | 0.1029 | 0.8502 | 0.8843 | 0.8669 | 0.9852 |
84
+ | 0.0027 | 7.5669 | 13000 | 0.1047 | 0.8636 | 0.8807 | 0.8721 | 0.9858 |
85
+ | 0.003 | 7.8580 | 13500 | 0.1086 | 0.8625 | 0.8800 | 0.8712 | 0.9857 |
86
+ | 0.0035 | 8.1490 | 14000 | 0.1059 | 0.8657 | 0.8752 | 0.8704 | 0.9854 |
87
+ | 0.0027 | 8.4400 | 14500 | 0.1060 | 0.8557 | 0.8888 | 0.8719 | 0.9853 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.44.2
93
+ - Pytorch 2.1.1+cu121
94
+ - Datasets 2.14.5
95
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_full",
3
+ "architectures": [
4
+ "DebertaV2ForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "LABEL_0": 0,
23
+ "LABEL_1": 1,
24
+ "LABEL_2": 2,
25
+ "LABEL_3": 3,
26
+ "LABEL_4": 4,
27
+ "LABEL_5": 5,
28
+ "LABEL_6": 6
29
+ },
30
+ "layer_norm_eps": 1e-07,
31
+ "max_position_embeddings": 512,
32
+ "max_relative_positions": -1,
33
+ "model_type": "deberta-v2",
34
+ "norm_rel_ebd": "layer_norm",
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 12,
37
+ "pad_token_id": 0,
38
+ "pooler_dropout": 0,
39
+ "pooler_hidden_act": "gelu",
40
+ "pooler_hidden_size": 768,
41
+ "pos_att_type": [
42
+ "p2c",
43
+ "c2p"
44
+ ],
45
+ "position_biased_input": false,
46
+ "position_buckets": 256,
47
+ "relative_attention": true,
48
+ "share_att_key": true,
49
+ "torch_dtype": "float32",
50
+ "transformers_version": "4.44.2",
51
+ "type_vocab_size": 0,
52
+ "vocab_size": 251000
53
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.7540983606557377, "recall": 0.9387755102040817, "f1": 0.8363636363636363, "accuracy": 0.9861003861003861}, "en_pud": {"precision": 0.8334901222953904, "recall": 0.8241860465116279, "f1": 0.8288119738072965, "accuracy": 0.9837079712882508}, "de_pud": {"precision": 0.8020257826887661, "recall": 0.8383060635226179, "f1": 0.819764705882353, "accuracy": 0.9803103464441423}, "pt_pud": {"precision": 0.89937106918239, "recall": 0.910828025477707, "f1": 0.9050632911392406, "accuracy": 0.990045712820951}, "ru_pud": {"precision": 0.7242314647377939, "recall": 0.7731660231660231, "f1": 0.7478991596638656, "accuracy": 0.9744252131232239}, "sv_pud": {"precision": 0.8659003831417624, "recall": 0.8785228377065112, "f1": 0.8721659430776653, "accuracy": 0.9869993709373034}, "tl_trg": {"precision": 0.7096774193548387, "recall": 0.9565217391304348, "f1": 0.8148148148148149, "accuracy": 0.9863760217983651}, "tl_ugnayan": {"precision": 0.625, "recall": 0.7575757575757576, "f1": 0.6849315068493151, "accuracy": 0.9744758432087511}, "zh_gsd": {"precision": 0.8431876606683805, "recall": 0.8552803129074316, "f1": 0.849190938511327, "accuracy": 0.9792707292707292}, "zh_gsdsimp": {"precision": 0.8591916558018253, "recall": 0.8636959370904325, "f1": 0.8614379084967321, "accuracy": 0.9808524808524809}, "hr_set": {"precision": 0.9257703081232493, "recall": 0.9422665716322167, "f1": 0.9339456022606853, "accuracy": 0.9911376751854906}, "da_ddt": {"precision": 0.8909512761020881, "recall": 0.8590604026845637, "f1": 0.8747152619589977, "accuracy": 0.990222488276963}, "en_ewt": {"precision": 0.8376681614349776, "recall": 0.8584558823529411, "f1": 0.8479346345891965, "accuracy": 0.9841016854604135}, "pt_bosque": {"precision": 0.8909836065573771, "recall": 0.8946502057613168, "f1": 0.8928131416837782, "accuracy": 0.9889871033183597}, "sr_set": {"precision": 0.9550827423167849, "recall": 0.9539551357733176, "f1": 0.9545186060248081, "accuracy": 0.9905437352245863}, "sk_snk": {"precision": 0.8300865800865801, "recall": 0.8382513661202186, "f1": 0.8341489940184883, "accuracy": 0.9755810301507538}, "sv_talbanken": {"precision": 0.8551401869158879, "recall": 0.9336734693877551, "f1": 0.8926829268292682, "accuracy": 0.9978897776905334}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5de29fd489e84af371da08d783149df911fb57c9c54eada7d713a20d3945a57
3
+ size 1112921036
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb809d58c892484a0b7ea895f0f3a8469b8c8fa2c8cfdbebcb9fdcc48b9b5e75
3
+ size 5304